16,160 research outputs found

    Gradient Symplectic Algorithms for Solving the Radial Schrodinger Equation

    Full text link
    The radial Schrodinger equation for a spherically symmetric potential can be regarded as a one dimensional classical harmonic oscillator with a time-dependent spring constant. For solving classical dynamics problems, symplectic integrators are well known for their excellent conservation properties. The class of {\it gradient} symplectic algorithms is particularly suited for solving harmonic oscillator dynamics. By use of Suzuki's rule for decomposing time-ordered operators, these algorithms can be easily applied to the Schrodinger equation. We demonstrate the power of this class of gradient algorithms by solving the spectrum of highly singular radial potentials using Killingbeck's method of backward Newton-Ralphson iterations.Comment: 19 pages, 10 figure

    Efficient creation of molecules from a cesium Bose-Einstein condensate

    Full text link
    We report a new scheme to create weakly bound Cs2_2 molecules from an atomic Bose-Einstein condensate. The method is based on switching the magnetic field to a narrow Feshbach resonance and yields a high atom-molecule conversion efficiency of more than 30%, a factor of three higher than obtained with conventional magnetic-field ramps. The Cs2_2 molecules are created in a single gg-wave rotational quantum state. The observed dependence of the conversion efficiency on the magnetic field and atom density shows scattering processes beyond two-body coupling to occur in the vicinity of the Feshbach resonance.Comment: 7 pages, 4 figures, submitted to Europhysics Letter

    Transition from KPZ to Tilted Interface Critical Behavior in a Solvable Asymmetric Avalanche Model

    Full text link
    We use a discrete-time formulation to study the asymmetric avalanche process [Phys. Rev. Lett. vol. 87, 084301 (2001)] on a finite ring and obtain an exact expression for the average avalanche size of particles as a function of toppling probabilities depending on parameters μ\mu and α\alpha. By mapping the model below and above the critical line onto driven interface problems, we show how different regimes of avalanches may lead to different types of critical interface behavior characterized by either annealed or quenched disorders and obtain exactly the related critical exponents which violate a well-known scaling relation when α2\alpha \ne 2.Comment: 10 page

    Exploring the BEC-BCS Crossover with an Ultracold Gas of 6^6Li Atoms

    Full text link
    We present an overview of our recent measurements on the crossover from a Bose-Einstein condensate of molecules to a Bardeen-Cooper-Schrieffer superfluid. The experiments are performed on a two-component spin-mixture of 6^6Li atoms, where a Fesh\-bach resonance serves as the experimental key to tune the s-wave scattering length and thus to explore the various interaction regimes. In the BEC-BCS crossover, we have characterized the interaction energy by measuring the size of the trapped gas, we have studied collective excitation modes, and we have observed the pairing gap. Our observations provide strong evidence for superfluidity in the strongly interacting Fermi gas.Comment: Proceedings of ICAP-2004 (Rio de Janeiro). Review on Innsbruck BEC-BCS crossover experiments with updated Feshbach resonance positio

    Off-diagonal correlations in a one-dimensional gas of dipolar bosons

    Full text link
    We present a quantum Monte Carlo study of the one-body density matrix (OBDM) and the momentum distribution of one-dimensional dipolar bosons, with dipole moments polarized perpendicular to the direction of confinement. We observe that the long-range nature of the dipole interaction has dramatic effects on the off-diagonal correlations: although the dipoles never crystallize, the system goes from a quasi-condensate regime at low interactions to a regime in which quasi-condensation is discarded, in favor of quasi-solidity. For all strengths of the dipolar interaction, the OBDM shows an oscillatory behavior coexisting with an overall algebraic decay; and the momentum distribution shows sharp kinks at the wavevectors of the oscillations, Q=±2πnQ = \pm 2\pi n (where nn is the atom density), beyond which it is strongly suppressed. This \emph{momentum filtering} effect introduces a characteristic scale in the momentum distribution, which can be arbitrarily squeezed by lowering the atom density. This shows that one-dimensional dipolar Bose gases, realized e.g. by trapped dipolar molecules, show strong signatures of the dipolar interaction in time-of-flight measurements.Comment: 10 pages, 6 figures. v2: fixed a mistake in the comparison with Ref. 9, as well as several typos. Published versio

    Surface location of sodium atoms attached to He-3 nanodroplets

    Get PDF
    We have experimentally studied the electronic 3p3s3p\leftarrow 3s excitation of Na atoms attached to 3^3He droplets by means of laser-induced fluorescence as well as beam depletion spectroscopy. From the similarities of the spectra (width/shift of absorption lines) with these of Na on 4^4He droplets, we conclude that sodium atoms reside in a ``dimple'' on the droplet surface. The experimental results are supported by Density Functional calculations at zero temperature, which confirm the surface location of sodium on 3^3He droplets, and provide a microscopic description of the ``dimple'' structure.Comment: 4 pages, 5 figure

    Observation of the Pairing Gap in a Strongly Interacting Fermi Gas

    Full text link
    We study fermionic pairing in an ultracold two-component gas of 6^6Li atoms by observing an energy gap in the radio-frequency excitation spectra. With control of the two-body interactions via a Feshbach resonance we demonstrate the dependence of the pairing gap on coupling strength, temperature, and Fermi energy. The appearance of an energy gap with moderate evaporative cooling suggests that our full evaporation brings the strongly interacting system deep into a superfluid state.Comment: 18 pages, 3 figure

    Precision Measurements of Collective Oscillations in the BEC-BCS Crossover

    Full text link
    We report on precision measurements of the frequency of the radial compression mode in a strongly interacting, optically trapped Fermi gas of Li-6 atoms. Our results allow for a test of theoretical predictions for the equation of state in the BEC-BCS crossover. We confirm recent quantum Monte-Carlo results and rule out simple mean-field BCS theory. Our results show the long-sought beyond-mean-field effects in the strongly interacting BEC regime.Comment: improved discussion of small ellipticity and anharmonicity correction

    Phase-dependent exciton transport and energy harvesting from thermal environments

    Get PDF
    Non-Markovian effects in the evolution of open quantum systems have recently attracted widespread interest, particularly in the context of assessing the efficiency of energy and charge transfer in nanoscale biomolecular networks and quantum technologies. With the aid of many-body simulation methods, we uncover and analyse an ultrafast environmental process that causes energy relaxation in the reduced system to depend explicitly on the phase relation of the initial state preparation. Remarkably, for particular phases and system parameters, the net energy flow is uphill, transiently violating the principle of detailed balance, and implying that energy is spontaneously taken up from the environment. A theoretical analysis reveals that non-secular contributions, significant only within the environmental correlation time, underlie this effect. This suggests that environmental energy harvesting will be observable across a wide range of coupled quantum systems.Comment: 5 + 4 pages, 3 + 2 figures. Comments welcom
    corecore