Non-Markovian effects in the evolution of open quantum systems have recently
attracted widespread interest, particularly in the context of assessing the
efficiency of energy and charge transfer in nanoscale biomolecular networks and
quantum technologies. With the aid of many-body simulation methods, we uncover
and analyse an ultrafast environmental process that causes energy relaxation in
the reduced system to depend explicitly on the phase relation of the initial
state preparation. Remarkably, for particular phases and system parameters, the
net energy flow is uphill, transiently violating the principle of detailed
balance, and implying that energy is spontaneously taken up from the
environment. A theoretical analysis reveals that non-secular contributions,
significant only within the environmental correlation time, underlie this
effect. This suggests that environmental energy harvesting will be observable
across a wide range of coupled quantum systems.Comment: 5 + 4 pages, 3 + 2 figures. Comments welcom