35 research outputs found

    Is it time to repair a fairly fast SAAB convertible? Testing an evidence-based mnemonic for the secondary prevention of cardiovascular disease

    Get PDF
    OBJECTIVES: Optimising secondary prevention of cardiovascular disease has the greatest potential to reduce recurrent events, yet despite major guidelines there are ongoing treatment gaps. FFSAABC (Fish oils, Fibrates, Statins, Aspirin, Angiotensin converting enzyme inhibitors or angiotensin 2 receptor antagonists, Beta blockers and Clopidogrel) is one mnemonic previously adopted to assist clinicians in remembering medications for use in secondary prevention. The aim of this narrative review is to examine the current evidence base for medications recommended for patients with established cardiovascular disease and the current applicability of this, or a revised mnemonic for their use. STUDY DESIGN: Randomised controlled trials and systematic reviews were sought examining Fish oils, Fibrates, Statins, Aspirin, Angiotensin converting enzyme inhibitors or angiotensin 2 receptor antagonists, Beta blockers or Clopidogrel vs placebo in secondary prevention. The emerging evidence base for other contemporary therapies including the P2Y12 inhibitors (ticagrelor and prasugrel) and aldosterone antagonists was also reviewed. RESULTS: Definitive evidence supports the use of statins, aspirin, angiotensin converting enzyme inhibitors or angiotensin 2 receptor antagonists, and P2Y12 antagonists (clopidogrel, ticagrelor or prasugrel) for the secondary prevention of cardiovascular disease. Aldosterone antagonists have strong evidence in the presence of systolic heart failure. There is a weaker evidence base for the routine use of omega-3 fatty acid supplementation although this therapy carries minimal harms. Fenofibrate reduces cardiovascular events in dyslipidaemic patients, with additional benefits in patients with diabetes. CONCLUSIONS: Mnemonic upgrading from a Fairly Fast SAAB Convertible to a Fairly Fast SA2A2B (Fish oils, Fibrate, Statin, Antiplatelets (Aspirin+Other), ACE/ARB, Aldosterone Antagonist, Beta-blocker) may help to ensure patients receive best practice evidence-based pharmacotherapies for the secondary prevention of cardiovascular disease

    Real-time Monitoring for the Next Core-Collapse Supernova in JUNO

    Full text link
    Core-collapse supernova (CCSN) is one of the most energetic astrophysical events in the Universe. The early and prompt detection of neutrinos before (pre-SN) and during the SN burst is a unique opportunity to realize the multi-messenger observation of the CCSN events. In this work, we describe the monitoring concept and present the sensitivity of the system to the pre-SN and SN neutrinos at the Jiangmen Underground Neutrino Observatory (JUNO), which is a 20 kton liquid scintillator detector under construction in South China. The real-time monitoring system is designed with both the prompt monitors on the electronic board and online monitors at the data acquisition stage, in order to ensure both the alert speed and alert coverage of progenitor stars. By assuming a false alert rate of 1 per year, this monitoring system can be sensitive to the pre-SN neutrinos up to the distance of about 1.6 (0.9) kpc and SN neutrinos up to about 370 (360) kpc for a progenitor mass of 30MM_{\odot} for the case of normal (inverted) mass ordering. The pointing ability of the CCSN is evaluated by using the accumulated event anisotropy of the inverse beta decay interactions from pre-SN or SN neutrinos, which, along with the early alert, can play important roles for the followup multi-messenger observations of the next Galactic or nearby extragalactic CCSN.Comment: 24 pages, 9 figure

    Microwave co-pyrolysis of kitchen food waste and rice straw: Effects of susceptor on thermal, surface, and fuel properties of biochar

    No full text
    In this research, microwave co-pyrolysis of kitchen food waste and rice straw under no susceptor, biochar susceptor, and ZnCl2 susceptor was undertaken to investigate the synergistic effects on biochar properties for energy application. The results showed that co-pyrolysis and the addition of susceptors significantly positively affected the thermochemical, fuel, thermal, and surface properties of biochar. Regardless of the susceptor conditions, blending kitchen food waste with rice straw effectively decreased the biochar yield (up to 2.14% and 6% for biochar and ZnCl2 susceptors, respectively) and abundance of –OH functional groups, but improved the chars’ thermal stability and surface area. Biochar produced at a ratio of 1:1 under ZnCl2 exhibited acceptably low ash content coupled with high higher heating value (20.550 MJ/kg), high energy yield (55.944%), and high fuel ratio (≤5.267) thereby demonstrating excellent fuel properties. These findings highlight the exceptional potential of co-pyrolytic biochar as a sustainable and eco-friendly energy source

    On the Recognition Performance of BioHash-Protected Finger Vein Templates

    No full text
    This chapter contributes towards advancing finger vein template protection research by presenting the first analysis on the suitability of the BioHashing template protection scheme for finger vein verification systems, in terms of the effect on the system’s recognition performance. Our results show the best performance when BioHashing is applied to finger vein patterns extracted using theWide Line Detector (WLD) and Repeated Line Tracking (RLT) feature extractors, and the worst performance when the Maximum Curvature (MC) extractor is used. The low recognition performance in the Stolen Token scenario is shown to be improvable by increasing the BioHash length; however, we demonstrate that the BioHash length is constrained in practice by the amount of memory required for the projection matrix. So, WLD finger vein patterns are found to be the most promising for BioHashing purposes due to their relatively small feature vector size, which allows us to generate larger BioHashes than is possible for RLT or MC feature vectors. In addition, we also provide an open-source implementation of a BioHash-protected finger vein verification system based on the WLD, RLT and MC extractors, so that other researchers can verify our findings and build upon our work

    The glycolysis/HIF-1α axis defines the inflammatory role of IL-4-primed macrophages

    No full text
    Summary: T helper type 2 (Th2) cytokine-activated M2 macrophages contribute to inflammation resolution and wound healing. This study shows that IL-4-primed macrophages exhibit a stronger response to lipopolysaccharide stimulation while maintaining M2 signature gene expression. Metabolic divergence between canonical M2 and non-canonical proinflammatory-prone M2 (M2INF) macrophages occurs after the IL-4Rα/Stat6 axis. Glycolysis supports Hif-1α stabilization and proinflammatory phenotype of M2INF macrophages. Inhibiting glycolysis blunts Hif-1α accumulation and M2INF phenotype. Wdr5-dependent H3K4me3 mediates the long-lasting effect of IL-4, with Wdr5 knockdown inhibiting M2INF macrophages. Our results also show that the induction of M2INF macrophages by IL-4 intraperitoneal injection and transferring of M2INF macrophages confer a survival advantage against bacterial infection in vivo. In conclusion, our findings highlight the previously neglected non-canonical role of M2INF macrophages and broaden our understanding of IL-4-mediated physiological changes. These results have immediate implications for how Th2-skewed infections could redirect disease progression in response to pathogen infection

    Real-time Monitoring for the Next Core-Collapse Supernova in JUNO

    No full text
    International audienceCore-collapse supernova (CCSN) is one of the most energetic astrophysical events in the Universe. The early and prompt detection of neutrinos before (pre-SN) and during the SN burst is a unique opportunity to realize the multi-messenger observation of the CCSN events. In this work, we describe the monitoring concept and present the sensitivity of the system to the pre-SN and SN neutrinos at the Jiangmen Underground Neutrino Observatory (JUNO), which is a 20 kton liquid scintillator detector under construction in South China. The real-time monitoring system is designed with both the prompt monitors on the electronic board and online monitors at the data acquisition stage, in order to ensure both the alert speed and alert coverage of progenitor stars. By assuming a false alert rate of 1 per year, this monitoring system can be sensitive to the pre-SN neutrinos up to the distance of about 1.6 (0.9) kpc and SN neutrinos up to about 370 (360) kpc for a progenitor mass of 30MM_{\odot} for the case of normal (inverted) mass ordering. The pointing ability of the CCSN is evaluated by using the accumulated event anisotropy of the inverse beta decay interactions from pre-SN or SN neutrinos, which, along with the early alert, can play important roles for the followup multi-messenger observations of the next Galactic or nearby extragalactic CCSN

    Real-time Monitoring for the Next Core-Collapse Supernova in JUNO

    No full text
    The core-collapse supernova (CCSN) is considered one of the most energetic astrophysical events in the universe. The early and prompt detection of neutrinos before (pre-SN) and during the supernova (SN) burst presents a unique opportunity for multi-messenger observations of CCSN events. In this study, we describe the monitoring concept and present the sensitivity of the system to pre-SN and SN neutrinos at the Jiangmen Underground Neutrino Observatory (JUNO), a 20 kton liquid scintillator detector currently under construction in South China. The real-time monitoring system is designed to ensure both prompt alert speed and comprehensive coverage of progenitor stars. It incorporates prompt monitors on the electronic board as well as online monitors at the data acquisition stage. Assuming a false alert rate of 1 per year, this monitoring system exhibits sensitivity to pre-SN neutrinos up to a distance of approximately 1.6 (0.9) kiloparsecs and SN neutrinos up to about 370 (360) kiloparsecs for a progenitor mass of 30 solar masses, considering both normal and inverted mass ordering scenarios. The pointing ability of the CCSN is evaluated by analyzing the accumulated event anisotropy of inverse beta decay interactions from pre-SN or SN neutrinos. This, along with the early alert, can play a crucial role in facilitating follow-up multi-messenger observations of the next galactic or nearby extragalactic CCSN

    Real-time Monitoring for the Next Core-Collapse Supernova in JUNO

    No full text
    International audienceCore-collapse supernova (CCSN) is one of the most energetic astrophysical events in the Universe. The early and prompt detection of neutrinos before (pre-SN) and during the SN burst is a unique opportunity to realize the multi-messenger observation of the CCSN events. In this work, we describe the monitoring concept and present the sensitivity of the system to the pre-SN and SN neutrinos at the Jiangmen Underground Neutrino Observatory (JUNO), which is a 20 kton liquid scintillator detector under construction in South China. The real-time monitoring system is designed with both the prompt monitors on the electronic board and online monitors at the data acquisition stage, in order to ensure both the alert speed and alert coverage of progenitor stars. By assuming a false alert rate of 1 per year, this monitoring system can be sensitive to the pre-SN neutrinos up to the distance of about 1.6 (0.9) kpc and SN neutrinos up to about 370 (360) kpc for a progenitor mass of 30MM_{\odot} for the case of normal (inverted) mass ordering. The pointing ability of the CCSN is evaluated by using the accumulated event anisotropy of the inverse beta decay interactions from pre-SN or SN neutrinos, which, along with the early alert, can play important roles for the followup multi-messenger observations of the next Galactic or nearby extragalactic CCSN

    Real-time Monitoring for the Next Core-Collapse Supernova in JUNO

    No full text
    International audienceCore-collapse supernova (CCSN) is one of the most energetic astrophysical events in the Universe. The early and prompt detection of neutrinos before (pre-SN) and during the SN burst is a unique opportunity to realize the multi-messenger observation of the CCSN events. In this work, we describe the monitoring concept and present the sensitivity of the system to the pre-SN and SN neutrinos at the Jiangmen Underground Neutrino Observatory (JUNO), which is a 20 kton liquid scintillator detector under construction in South China. The real-time monitoring system is designed with both the prompt monitors on the electronic board and online monitors at the data acquisition stage, in order to ensure both the alert speed and alert coverage of progenitor stars. By assuming a false alert rate of 1 per year, this monitoring system can be sensitive to the pre-SN neutrinos up to the distance of about 1.6 (0.9) kpc and SN neutrinos up to about 370 (360) kpc for a progenitor mass of 30MM_{\odot} for the case of normal (inverted) mass ordering. The pointing ability of the CCSN is evaluated by using the accumulated event anisotropy of the inverse beta decay interactions from pre-SN or SN neutrinos, which, along with the early alert, can play important roles for the followup multi-messenger observations of the next Galactic or nearby extragalactic CCSN
    corecore