1,466 research outputs found

    Airport Surface Delays and Causes: A Preliminary Analysis

    Get PDF
    This report summarizes FAA Program Analysis and Operations Research Service (ASD-400)/Lockheed Martin activities and findings related to airport surface delays and causes, in support of NASA Langley Research Center's Terminal Area Productivity (TAP) Program. The activities described in this report were initiated in June 1995. A preliminary report was published on September 30, 1995. The final report incorporates data collection forms filled out by traffic managers, other FAA staff, and an airline for the New York City area, some updates, data previously requested from various sources to support this analysis, and further quantification and documentation than in the preliminary report. This final report is based on data available as of April 12, 1996. This report incorporates data obtained from review and analysis of data bases and literature, discussions/interviews with engineers, air-traffic staff, other FAA technical personnel, and airline staff, site visits, and a survey on surface delays and causes. It includes analysis of delay statistics; preliminary findings and conclusions on surface movement, surface delay sources and causes, runway occupancy time (ROT), and airport characteristics impacting surface operations and delays; and site-specific data on the New York City area airports, which are the focus airports for this report

    The intermediate evolution phase in case of truncated selection

    Full text link
    Using methods of statistical physics, we present rigorous theoretical calculations of Eigen's quasispecies theory with the truncated fitness landscape which dramatically limits the available sequence space of a reproducing quasispecies. Depending on the mutation rates, we observe three phases, a selective one, an intermediate one with some residual order and a completely randomized phase. Our results are applicable for the general case of fitness landscape.Comment: 8 page

    An Atypical Presentation of Acute Macular Neuroretinopathy after Non-Ocular Trauma

    Get PDF
    Purpose: Acute macular neuroretinopathy (AMN) is a rare clinical entity with an uncertain etiology. We report an atypical case presenting with retinal hemorrhages (RH) and cotton-wool spots (CWS) following non-ocular trauma. Observations: A 49-year-old male presented with an acute onset of a paracentral scotoma in his left eye, immediately following a motor vehicle accident 1 day prior. Fundus findings revealed a unilateral nasal petalloid perifoveal lesion with the tip pointing toward the fovea associated with CWS and RH. Optical coherence tomography demonstrated disruption of the ellipsoid zone. Symptoms and exam findings improved at 2-week follow-up without any intervention, consistent with the natural history of the disease process. Conclusion: We report a rare case of AMN following non-ocular trauma with the unique fundus findings of CWS and RH. This presentation supports the role of ischemia in the retinal deep capillary plexus, of which trauma contributed to the pathophysiological process. Summary: AMN is a rare condition whose pathophysiological process remains speculative. We report an atypical case of AMN, which supports the role of trauma in the pathophysiology of deep retinal capillary plexus compromise

    Discovery and genotyping of structural variation from long-read haploid genome sequence data

    Get PDF
    In an effort to more fully understand the full spectrum of human genetic variation, we generated deep single-molecule, real-time (SMRT) sequencing data from two haploid human genomes. By using an assembly-based approach (SMRT-SV), we systematically assessed each genome independently for structural variants (SVs) and indels resolving the sequence structure of 461,553 genetic variants from 2 bp to 28 kbp in length. We find that &gt;89% of these variants have been missed as part of analysis of the 1000 Genomes Project even after adjusting for more common variants (MAF &gt; 1%). We estimate that this theoretical human diploid differs by as much as ∌16 Mbp with respect to the human reference, with long-read sequencing data providing a fivefold increase in sensitivity for genetic variants ranging in size from 7 bp to 1 kbp compared with short-read sequence data. Although a large fraction of genetic variants were not detected by short-read approaches, once the alternate allele is sequence-resolved, we show that 61% of SVs can be genotyped in short-read sequence data sets with high accuracy. Uncoupling discovery from genotyping thus allows for the majority of this missed common variation to be genotyped in the human population. Interestingly, when we repeat SV detection on a pseudodiploid genome constructed in silico by merging the two haploids, we find that ∌59% of the heterozygous SVs are no longer detected by SMRT-SV. These results indicate that haploid resolution of long-read sequencing data will significantly increase sensitivity of SV detection.</jats:p

    PROSAC: A Submillimeter Array Survey of Low-Mass Protostars. I. Overview of Program: Envelopes, Disks, Outflows and Hot Cores

    Get PDF
    This paper presents a large spectral line and continuum survey of 8 deeply embedded, low-mass protostellar cores using the Submillimeter Array. Each source was observed in high excitation lines of some of the most common molecular species, CO, HCO+, CS, SO, H2CO, CH3OH and SiO. Line emission from 11 species originating from warm and dense gas have been imaged at high angular resolution (1-3"; typically 200-600 AU) together with continuum emission at 230 GHz (1.3 mm) and 345 GHz (0.8 mm). Compact continuum emission is observed for all sources which likely originates in marginally optically thick circumstellar disks, with typical lower limits to their masses of 0.1 M_sun (1-10% of the masses of their envelopes) and having a dust opacity law with beta approximately 1. Prominent outflows are present in CO 2-1 observations in all sources: the most diffuse outflows are found in the sources with the lowest ratios of disk-to-envelope mass, and it is suggested that these sources are in a phase where accretion of matter from the envelope has almost finished and the remainder of the envelope material is being dispersed by the outflows. Other characteristic dynamical signatures are found with inverse P Cygni profiles indicative of infalling motions seen in the 13CO 2-1 lines toward NGC1333-IRAS4A and -IRAS4B. Outflow-induced shocks are present on all scales in the protostellar environments and are most clearly traced by the emission of CH3OH in NGC1333-IRAS4A and -IRAS4B. These observations suggest that the emission of CH3OH and H2CO from these proposed "hot corinos" are related to the shocks caused by the protostellar outflows. Only one source, NGC1333-IRAS2A, has evidence for hot, compact CH3OH emission coincident with the embedded protostar.Comment: Accepted for publication in ApJ (52 pages; 9 figures). Abstract abridge

    Ultraviolet asymptotics of scalar and pseudoscalar correlators in hot Yang-Mills theory

    Full text link
    Inspired by recent lattice measurements, we determine the short-distance (a > omega >> pi T) asymptotics of scalar (trace anomaly) and pseudoscalar (topological charge density) correlators at 2-loop order in hot Yang-Mills theory. The results are expressed in the form of an Operator Product Expansion. We confirm and refine the determination of a number of Wilson coefficients; however some discrepancies with recent literature are detected as well, and employing the correct values might help, on the qualitative level, to understand some of the features observed in the lattice measurements. On the other hand, the Wilson coefficients show slow convergence and it appears uncertain whether this approach can lead to quantitative comparisons with lattice data. Nevertheless, as we outline, our general results might serve as theoretical starting points for a number of perhaps phenomenologically more successful lines of investigation.Comment: 27 pages. v2: minor improvements, published versio
    • 

    corecore