11,537 research outputs found
Electrocatalysis of fuel cell reactions: Investigation of alternate electrolytes
Oxygen reduction and transport properties of the electrolyte in the phosphoric acid fuel cell are studied. The areas covered were: (1) development of a theoretical expression for the rotating ring disk electrode technique; (2) determination of the intermediate reaction rate constants for oxygen reduction on platinum in phosphoric acid electrolyte; (3) determination of oxygen reduction mechanism in trifluoreomethanesulfonic acid (TFMSA) which was considered as an alternate electrolyte for the acid fuel cells; and (4) the measurement of transport properties of the phosphoric acid electrolyte at high concentrations and temperatures
Electrocatalysis of fuel cell reactions: Investigation of alternate electrolytes
Oxygen reduction and transport properties of the electrolyte in the phosphoric acid fuel cell are studied. A theoretical expression for the rotating ring-disk electrode technique; the intermediate reaction rate constants for oxygen reduction on platinum in phosphoric acid electrolyte; oxygen reduction mechanism in trifluoromethanesulfonic acid (TFMSA), considered as an alternate electrolyte for the acid fuel cells; and transport properties of the phosphoric acid electrolyte at high concentrations and temperatures are covered
Rank-ordered Multifractal Spectrum for Intermittent Fluctuations
We describe a new method that is both physically explicable and
quantitatively accurate in describing the multifractal characteristics of
intermittent events based on groupings of rank-ordered fluctuations. The
generic nature of such rank-ordered spectrum leads it to a natural connection
with the concept of one-parameter scaling for monofractals. We demonstrate this
technique using results obtained from a 2D MHD simulation. The calculated
spectrum suggests a crossover from the near Gaussian characteristics of small
amplitude fluctuations to the extreme intermittent state of large rare events.Comment: 4 pages, 5 figure
On the Analytic Structure of the Quark Self-Energy in Nambu-Jona- Lasinio Models
The self-energy of quarks is investigated for various models which are
inspired by the Nambu--Jona-Lasinio (NJL) model. Including, beyond the
Hartree-Fock approximation, terms up to second-order in the quark interaction,
the real and imaginary parts of scalar and vector components of the self-energy
are discussed. The second-order contributions depend on the energy and momentum
of the quark under consideration. This leads to solutions of the Dirac equation
which are significantly different from those of a free quark or a quark with
constant effective mass, as obtained in the Hartree-Fock approximation.Comment: 15 pages LaTeX, 6 figures can be obtained from author
An automatic visual analysis system for tennis
This article presents a novel video analysis system for coaching tennis players of all levels, which uses computer vision algorithms to automatically edit and index tennis videos into meaningful annotations.
Existing tennis coaching software lacks the ability to automatically index a tennis match into key events, and therefore, a coach who uses existing software is burdened with time-consuming manual video editing. This work aims to explore the effectiveness of a system to automatically detect tennis events. A secondary aim of this work is to explore the bene- fits coaches experience in using an event retrieval system to retrieve the automatically indexed events. It was found that automatic event detection can significantly improve the experience of using video feedback as part of an instructional coaching session. In addition to the automatic detection of key tennis events, player and ball movements are automati- cally tracked throughout an entire match and this wealth of data allows users to find interesting patterns in play. Player and ball movement information are integrated with the automatically detected tennis events, and coaches can query the data to retrieve relevant key points during a match or analyse player patterns that need attention. This coaching software system allows coaches to build advanced queries, which cannot be facilitated with existing video coaching solutions, without tedious manual indexing. This article proves that the event detection algorithms in this work can detect the main events in tennis with an average precision and recall of 0.84 and 0.86, respectively, and can typically eliminate man- ual indexing of key tennis events
Nonlinear Evolution of Very Small Scale Cosmological Baryon Perturbations at Recombination
The evolution of baryon density perturbations on very small scales is
investigated. In particular, the nonlinear growth induced by the radiation drag
force from the shear velocity field on larger scales during the recombination
epoch, which is originally proposed by Shaviv in 1998, is studied in detail. It
is found that inclusion of the diffusion term which Shaviv neglected in his
analysis results in rather mild growth whose growth rate is instead
of enormous amplification of Shaviv's original claim since the
diffusion suppresses the growth. The growth factor strongly depends on the
amplitude of the large scale velocity field. The nonlinear growth mechanism is
applied to density perturbations of general adiabatic cold dark matter (CDM)
models. In these models, it has been found in the previous works that the
baryon density perturbations are not completely erased by diffusion damping if
there exists gravitational potential of CDM. With employing the perturbed rate
equation which is derived in this paper, the nonlinear evolution of baryon
density perturbations is investigated. It is found that: (1) The nonlinear
growth is larger for smaller scales. This mechanism only affects the
perturbations whose scales are smaller than , which are
coincident with the stellar scales. (2) The maximum growth factors of baryon
density fluctuations for various COBE normalized CDM models are typically less
than factor 10 for large scale velocity peaks. (3) The growth factor
depends on .Comment: 24 pages, 9 figures, submitted to Ap
The Gamow-Teller States in Relativistic Nuclear Models
The Gamow-Teller(GT) states are investigated in relativistic models. The
Landau-Migdal(LM) parameter is introduced in the Lagrangian as a contact term
with the pseudo-vector coupling. In the relativistic model the total GT
strength in the nucleon space is quenched by about 12% in nuclear matter and by
about 6% in finite nuclei, compared with the one of the Ikeda-Fujii-Fujita sum
rule. The quenched amount is taken by nucleon-antinucleon excitations in the
time-like region. Because of the quenching, the relativistic model requires a
larger value of the LM parameter than non-relativistic models in describing the
excitation energy of the GT state. The Pauli blocking terms are not important
for the description of the GT states.Comment: REVTeX4, no figure
An adversarial optimization approach to efficient outlier removal
This paper proposes a novel adversarial optimization approach to efficient outlier removal in computer vision. We characterize the outlier removal problem as a game that involves two players of conflicting interests, namely, optimizer and outlier. Such an adversarial view not only brings new insights into various existing methods, but also gives rise to a general optimization framework that provably unifies them. Under the proposed framework, we develop a new outlier removal approach that is able to offer a much needed control over the trade-off between reliability and speed, which is otherwise not available in previous methods. The proposed approach is driven by a mixed-integer minmax (convex-concave) optimization process. Although a minmax problem is generally not amenable to efficient optimization, we show that for some commonly used vision objective functions, an equivalent Linear Program reformulation exists. We demonstrate our method on two representative multiview geometry problems. Experiments on real image data illustrate superior practical performance of our method over recent techniques.Jin Yu, Anders Eriksson, Tat-Jun Chin, David Suterhttp://www.iccv2011.org
Formation of Quantum-Degenerate Sodium Molecules
Ultra-cold sodium molecules were produced from an atomic Bose-Einstein
condensate by ramping an applied magnetic field across a Feshbach resonance.
More than molecules were generated with a conversion efficiency of
4%. Using laser light resonant with an atomic transition, the remaining
atoms could be selectively removed, preventing fast collisional relaxation of
the molecules. Time-of-flight analysis of the pure molecular sample yielded an
instantaneous phase-space density greater than 20.Comment: 5 pages, 4 figures (final published version
- âŠ