522 research outputs found

    Studying Light-Harvesting Models with Superconducting Circuits

    Full text link
    The process of photosynthesis, the main source of energy in the animate world, converts sunlight into chemical energy. The surprisingly high efficiency of this process is believed to be enabled by an intricate interplay between the quantum nature of molecular structures in photosynthetic complexes and their interaction with the environment. Investigating these effects in biological samples is challenging due to their complex and disordered structure. Here we experimentally demonstrate a new approach for studying photosynthetic models based on superconducting quantum circuits. In particular, we demonstrate the unprecedented versatility and control of our method in an engineered three-site model of a pigment protein complex with realistic parameters scaled down in energy by a factor of 10510^5. With this system we show that the excitation transport between quantum coherent sites disordered in energy can be enabled through the interaction with environmental noise. We also show that the efficiency of the process is maximized for structured noise resembling intramolecular phononic environments found in photosynthetic complexes.Comment: 8+12 pages, 4+12 figure

    High Excitation Molecular Gas in the Magellanic Clouds

    Full text link
    We present the first survey of submillimeter CO 4-3 emission in the Magellanic Clouds. The survey is comprised of 15 6'x6' maps obtained using the AST/RO telescope toward the molecular peaks of the Large and Small Magellanic Clouds. We have used these data to constrain the physical conditions in these objects, in particular their molecular gas density and temperature. We find that there are significant amounts of molecular gas associated with most of these molecular peaks, and that high molecular gas temperatures are pervasive throughout our sample. We discuss whether this may be due to the low metallicities and the associated dearth of gas coolants in the Clouds, and conclude that the present sample is insufficient to assert this effect.Comment: 18 pages, 3 figures, 5 tables. To appear in Ap

    Teaching cancer imaging in the era of precision medicine: Looking at the big picture

    Get PDF
    The role of imaging in cancer diagnosis and treatment has evolved at the same rapid pace as cancer management. Over the last twenty years, with the advancement of technology, oncology has become a multidisciplinary field that allows for researchers and clinicians not only to create individualized treatment options for cancer patients, but also to evaluate patients\u27 response to therapy with increasing precision. Familiarity with these concepts is a requisite for current and future radiologists, as cancer imaging studies represent a significant and growing component of any radiology practice, from tertiary cancer centers to community hospitals. In this review we provide the framework to teach cancer imaging in the era of genomic oncology. After reading this article, readers should be able to illustrate the basics cancer genomics, modern cancer genomics, to summarize the types of systemic oncologic therapies available, their patterns of response and their adverse events, to discuss the role of imaging in oncologic clinical trials and the role of tumor response criteria and to display the future directions of oncologic imaging

    Characterization of Drug-Resistant Lipid-Dependent Differentially Detectable Mycobacterium tuberculosis

    Get PDF
    An estimated 15-20% of patients who are treated for pulmonary tuberculosis (TB) are culture-negative at the time of diagnosis. Recent work has focused on the existence of differentially detectable Mycobacterium tuberculosis (Mtb) bacilli that do not grow under routine solid culture conditions without the addition of supplementary stimuli. We identified a cohort of TB patients in Lima, Peru, in whom acid-fast bacilli could be detected by sputum smear microscopy, but from whom Mtb could not be grown in standard solid culture media. When we attempted to re-grow Mtb from the frozen sputum samples of these patients, we found that 10 out of 15 could be grown in a glycerol-poor/lipid-rich medium. These fell into the following two groups: a subset that could be regrown in glycerol after lipid-resuscitation , and a group that displayed a heritable glycerol-sensitive phenotype that were unable to grow in the presence of this carbon source. Notably, all of the glycerol-sensitive strains were found to be multidrug resistant. Although whole-genome sequencing of the lipid-resuscitated strains identified 20 unique mutations compared to closely related strains, no single genetic lesion could be associated with this phenotype. In summary, we found that lipid-based media effectively fostered the growth of Mtb from a series of sputum smear-positive samples that were not culturable in glycerol-based Lowenstein-Jensen or 7H9 media, which is consistent with Mtb\u27s known preference for non-glycolytic sources during infection. Analysis of the recovered strains demonstrated that both genetic and non-genetic mechanisms contribute to the observed differential capturability, and suggested that this phenotype may be associated with drug resistance

    Ecological connectivity in fragmented agricultural landscapes and the importance of scattered trees and small patches

    Get PDF
    Background Fragmentation and habitat loss can restrict species movement and reduce connectivity, negatively impacting biodiversity. Characterising the overall connectivity of an area can inform better management of human modified landscapes. Contemporary connectivity modelling methods seldom incorporate fine-scale movement patterns associated with movement between fine-scaled structural connectivity elements such as scattered trees, roadside corridors and small patches of habitat. This study aims to characterise connectivity within the Karuah-Myall catchments, a typical woodland ecosystem that is fragmented by agriculture, using least-cost path analysis and a graph-theoretic approach; it focuses on how fine-scaled vegetation such as scattered trees support connectivity. We mapped scattered (and paddock) trees within this agricultural landscape where the main human modified land use was pasture. We modelled connectivity for a general representative woodland species using an interpatch dispersal distance and gap crossing threshold, and resistance from different land cover types. The gap crossing distance threshold was used to model movement between fine-scaled vegetation features. We compared the least-cost paths modelled with and without scattered trees. Results Our results show that by excluding scattered trees, least-cost paths across the cleared pasture landscape did not reflect the types of movement patterns typically observed from field studies, such as those associated with a foray-search strategy used by small and medium mammals and birds. The modelling also shows that the Karuah-Myall catchments are well connected and provide value to biodiversity beyond the catchment borders, by connecting coastal vegetation to the Great Eastern Ranges national wildlife corridor initiative. Conclusion Connectivity models that exclude fine-scale landscape features such as scattered trees and small, linear patches risk misrepresenting connectivity patterns. Models of regional-scale connectivity can be influenced by the presence or absence of even the smallest features, such as scattered trees

    Patient Access to U.S. Physicians Who Conduct Internet or E-mail Consults

    Get PDF
    BACKGROUND: E-mail communication has the potential to improve communication between patients and doctors. OBJECTIVE: The objective of the study is to describe the access of patients to physicians who conduct e-mail consults. METHODS: We analyzed data from the National Ambulatory Medical Care Survey (NAMCS), a nationally representative cross-sectional survey of office-based physician visits, in 2001, 2002, and 2003. The main outcome measure was the percentage of visits to a provider who reported doing internet or e-mail consults. RESULTS: There was fewer than 1 in 10 outpatient visits in 2001 (9.2%) to physicians who reported doing internet or e-mail consults, and this did not increase in 2002 (5.8%) or 2003 (5.5%). Access to these physicians was greater among patients who were male, nonminority, lived in the Western United States, seen for pre-/postoperative care, seen by a primary care provider, and not seen by a nurse during their visit. Access to physicians who conducted internet or e-mail consults was independent of other patient (e.g., chronic conditions), provider (e.g., office setting), and visit (e.g., medications prescribed) characteristics. CONCLUSIONS: Access to physicians who do internet or e-mail consults is generally low and did not increase between 2001 and 2003, despite growth in internet access and in other internet-related activities

    DMAPT inhibits NF-κB activity and increases sensitivity of prostate cancer cells to X-rays in vitro and in tumor xenografts in vivo

    Get PDF
    Constitutive activation of the pro-survival transcription factor NF-κB has been associated with resistance to both chemotherapy and radiation therapy in many human cancers, including prostate cancer. Our lab and others have demonstrated that the natural product parthenolide can inhibit NF-κB activity and sensitize PC-3 prostate cancers cells to X-rays in vitro; however, parthenolide has poor bioavailability in vivo and therefore has little clinical utility in this regard. We show here that treatment of PC-3 and DU145 human prostate cancer cells with dimethylaminoparthenolide (DMAPT), a parthenolide derivative with increased bioavailability, inhibits constitutive and radiation-induced NF-κB binding activity and slows prostate cancer cell growth. We also show that DMAPT increases single and fractionated X-ray-induced killing of prostate cancer cells through inhibition of DNA double strand break repair and also that DMAPT-induced radiosensitization is, at least partially, dependent upon the alteration of intracellular thiol reduction-oxidation chemistry. Finally, we demonstrate that the treatment of PC-3 prostate tumor xenografts with oral DMAPT in addition to radiation therapy significantly decreases tumor growth and results in significantly smaller tumor volumes compared to xenografts treated with either DMAPT or radiation therapy alone, suggesting that DMAPT might have a potential clinical role as a radiosensitizing agent in the treatment of prostate cancer

    All clinically-relevant blood components transmit prion disease following a single blood transfusion: a sheep model of vCJD

    Get PDF
    Variant CJD (vCJD) is an incurable, infectious human disease, likely arising from the consumption of BSE-contaminated meat products. Whilst the epidemic appears to be waning, there is much concern that vCJD infection may be perpetuated in humans by the transfusion of contaminated blood products. Since 2004, several cases of transfusion-associated vCJD transmission have been reported and linked to blood collected from pre-clinically affected donors. Using an animal model in which the disease manifested resembles that of humans affected with vCJD, we examined which blood components used in human medicine are likely to pose the greatest risk of transmitting vCJD via transfusion. We collected two full units of blood from BSE-infected donor animals during the pre-clinical phase of infection. Using methods employed by transfusion services we prepared red cell concentrates, plasma and platelets units (including leucoreduced equivalents). Following transfusion, we showed that all components contain sufficient levels of infectivity to cause disease following only a single transfusion and also that leucoreduction did not prevent disease transmission. These data suggest that all blood components are vectors for prion disease transmission, and highlight the importance of multiple control measures to minimise the risk of human to human transmission of vCJD by blood transfusion

    Tissue of origin dictates branched-chain amino acid metabolism in mutant Kras-driven cancers

    Get PDF
    Tumor genetics guides patient selection for many new therapies, and cell culture studies have demonstrated that specific mutations can promote metabolic phenotypes. However, whether tissue context defines cancer dependence on specific metabolic pathways is unknown. Kras activation and Trp53 deletion in the pancreas or the lung result in pancreatic ductal adenocarinoma (PDAC) or non-small cell lung carcinoma (NSCLC), respectively, but despite the same initiating events, these tumors use branched-chain amino acids (BCAAs) differently. NSCLC tumors incorporate free BCAAs into tissue protein and use BCAAs as a nitrogen source, whereas PDAC tumors have decreased BCAA uptake. These differences are reflected in expression levels of BCAA catabolic enzymes in both mice and humans. Loss of Bcat1 and Bcat2, the enzymes responsible for BCAA use, impairs NSCLC tumor formation, but these enzymes are not required for PDAC tumor formation, arguing that tissue of origin is an important determinant of how cancers satisfy their metabolic requirements.National Institutes of Health (U.S.) (Grant F30CA183474)National Institutes of Health (U.S.) (Grant T32GM007753
    corecore