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1. Introduction 29 

Otoconia and otoliths act as a mass load that increase the sensitivity of mechanosensory hair 30 
cells to the effects of gravity and linear acceleration in mammals and fish, respectively. While the 31 
morphology of otoconia (“ear particles”) and otoliths (“ear stones”) differ, the initial formation of 32 
bio-crystals rely on many homologous proteins [1].  33 
 Zebrafish otoliths are primarily composed of calcium carbonate (CaCO3), in the form of 34 
aragonite, which accounts for ~99% of the total otolithic mass with the remainder consisting of 35 
proteins called otoconins [2, 3]. Further analysis of teleost otoliths has identified more than 380 36 
protein components [4]. Based on the level of protein expression or changes in the rate of otolith 37 
growth, the polymorph of calcium carbonate crystals can change [1, 5]. For example, knockdown of 38 
Starmaker results in otoliths made of calcite rather than aragonite [6]. There are three pairs of otoliths 39 
in zebrafish, which include the sagittae, lapilli, and asterisci. While the lapillus and sagitta nucleate 40 
early in zebrafish development, the asteriscus does not form until 11-12 days in development [7]. The 41 
center of the otoliths contains a proteinaceous core that acts as a site for otolith nucleation and 42 
biomineralization. This matrix lays the foundation for further otolith growth, which is mediated by 43 
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daily deposition of additional otoconins and calcium carbonate molecules [2]. Otolith nucleation 44 
occurs when the otolith precursor particles (OPPs) bind to the tips of the immotile kinocilia of tether 45 
cells within the otic vesicle [8, 9]. Subsequent studies have demonstrated that the critical period of 46 
otolith seeding and nucleation starts at 18-18.5 hpf (hours post fertilization) and ceases by 24 hpf [1, 47 
8, 10-12]. 48 

In mammalian inner ear development, Otoconin-90 (Oc90; the major protein component of 49 
otoconia) is necessary for otoconial seeding and nucleation [13-15]. Oc90 can bind Otolin-1 (Otol1) to 50 
establish a protein-rich matrix that serves as a scaffold for subsequent deposition of calcium 51 
carbonate [16, 17]. Additionally, in vitro studies have suggested that Oc90 and Otol1 act 52 
synergistically to modulate otoconial crystal morphology [17]. While Oc90 is not the major protein 53 
component in zebrafish otoliths, it plays an important role in otolith seeding and early development 54 
as oc90-morphants do not develop otoliths [1, 18]. While additional gene mutations have been 55 
identified that lead to otolith agenesis in zebrafish [19-24], the genes responsible for several zebrafish 56 
otolith mutants have been undetermined. 57 

In this study, we sought to identify and characterize the causative gene in a trio of zebrafish 58 
mutants, no content (nco) corkscrew (csr), and vanished (vns), which fail to develop otoliths during early 59 
inner ear development. We provide genetic evidence that the causative gene is polyketide synthase 60 
(pks1; currently wu:fc01d11), a candidate gene that was previously identified as a key factor of 61 
biomineralization in Japanese medaka (Oryzias latipes) and sea urchin (Hemicentrotus pulcherrimus) 62 
[25]. Furthermore, we offer potential signaling pathways for pks1 function during inner ear 63 
development in the zebrafish. 64 

2. Materials and Methods  65 

Husbandry and maintenance 66 

All zebrafish were maintained in a temperature-controlled (28.5ºC) and light-controlled (14h 67 
on/10h off) room per standardized conditions. nco strain (jj149) was generated by an ENU screen on 68 
the AB background and obtained from ZIRC (Eugene, OR, USA)[26]. csr was a spontaneous mutant 69 
generated in a bre-KO2/ntl-GFP line (AB background). vns was a spontaneous mutant generated in a 70 
AB/TL background. All protocols were approved by Creighton University and the University of 71 
Michigan Animal Care and Use Committees.  72 

Whole genome and RNA-sequencing 73 

Mutant nco embryos and wild-type (WT) clutchmates were phenotyped and collected during the 74 
critical period of otolith nucleation and seeding (24 hours post fertilization, hpf) and the whole 75 
embryo lysates (n=50) were submitted for RNA sequencing. Analysis was completed using MMAPPR 76 
(Mutation Mapping Analysis Pipeline for Pooled RNA-seq) as previously described [24]. Whole 77 
genome sequencing of csr phenotypically-mutant embryos (n=150) was performed and analyzed 78 
using MegaMapper as previously described [27]. Common SNPs were removed by the Single 79 
Nucleotide Polymorphism Database (dbSNPs). Reference sequences for both experiments were 80 
mapped to Zv9. All sequencing was conducted at the University of Nebraska Medical Center 81 
Genomics Core Facility. Accession numbers for nco RNA-seq and csr genome sequencing will be 82 
provided during review. 83 
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mRNA and plasmid DNA rescue 84 

WT mRNA and pks1L905P were synthesized using mMessage Machine from a clone provided by 85 
Dr. Hiroyuki Takeda (University of Tokyo), cleaned on an RNeasy column, and subsequently injected 86 
into single-cell csr and nco embryos. Naked plasmid of the medaka pks1 clone was injected into vns 87 
embryos. Overall penetrance of otolith formation was determined in all three mutants. Site-directed 88 
mutagenesis (Agilent) was used to generate the mutant clone containing the causative mutation in 89 
csr (pks1L905P in Japanese medaka; pks1A911P in zebrafish). Primers used for site-directed mutagenesis 90 
were:  91 

pks1_L905P_Forward: 5’-GATATGGCGTGATGTCCGGTGACAGGTTGAAGATC-3’ 92 
pks1_L905P_Reverse: 5’-ATCTTCAACCTGTCACCGGACATCACGCCATATC-3’ 93 

Pathway analysis 94 

Pathway analysis of nco was performed using Ingenuity Pathway Analysis (QIAGEN  Inc., 95 
https://www.qiagenbioinformatics.com/products/ingenuity-pathway-analysis [28]. The Ensembl 96 
Gene IDs were assigned to each gene and uploaded to IPA. Cut-off for gene expression analysis was 97 
set at 0.75 RPKM. The calculated z-score indicates a pathway with genes exhibiting increased mRNA 98 
levels (positive) or decreased mRNA levels (negative). No change in mRNA levels results in a z-score 99 
of zero. 100 

Genotyping 101 

 csr, nco, and vns samples were PCR-amplified and submitted for Sanger sequencing using 102 
the following primers: 103 

nco_Forward: 5’-GGGAGGATGCTTGTTGTTGG-3’ 104 
nco_Reverse: 5’-GTGGCCCAGAATAGGATCCA-3’ 105 
csr_Forward: 5’-AAGACGGGGACATGACTCAG-3’ 106 
csr_Reverse: 5’-TTCAACAAACAGTGCTCCGG-3’ 107 
vns_Forward: 5’-GCCATCATTGGAATTGGATG-3’ 108 
vns_Reverse: 5-GGTGTTCCAGTCCCATGAGC-3’ 109 

RT-PCR 110 

All RNA was extracted from Danio rerio wild-type embryos (A/B strain). After collecting embryos at 111 
the separate time-points, the samples were homogenised in lysis buffer from the Quick-RNA  112 
MiniPrep kit (Zymo Research-R1054) and RNA was extracted following protocol provided by the 113 
manufacturer. The RNA samples were then DNase treated using TURBO  DNase (ThermoFisher, 114 
AM2238) as per manufacturer instructions, in order to remove any genomic contamination that may 115 
be present in the RNA. cDNA synthesis was achieved using the GoScript  Reverse Transcription 116 
System (Promega, A5001) and followed the protocol provided by the manufacturer. 117 
 actb1_Forward: 5’-CTTCCAGCCTTCCTTCCT-3’ 118 
 actb1_Reverse: 5’-CCACCGATCCAGACGGAGTA-3’ 119 
 pks1_Forward: 5’-GAATTTTCTGCCGAGTAGAACAAAG-3’ 120 
 pks1_Reverse: 5’-TCTGCATGTCAGGCGATCAG-3’ 121 
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RT-PCR on the cDNA samples was carried out using the GoTaq  G2 Flexi DNA Polymerase 122 
(Promega, M7805) and PCR was done following the protocol provided by the manufacturer, using 123 
the primers stated above. The RT-PCR samples were then run on a 2% agarose gel. 124 

Immunofluorescence 125 

csr and nco embryos were collected during key stages in early inner ear development, fixed with 126 
hydrogel and washed in CHAPS-based (1% by weight) CLARITY-clearing solution [29]. Embryos 127 
were decalcified with EDTA (120 mM in 0.1% PBS-Triton) before blocking (0.1% PBS-Triton with 128 
3.33% sheep serum and 3.33% BSA), incubating in primary and secondary antibodies diluted in 129 
blocking buffer, mounting in 50% Glycerol-PBS solution, and imaging by confocal microscopy (Leica 130 
TCS SP8). Affinity-purified rabbit polyclonal antibodies were generated to Otogelin 131 
(CGNRVDGPSASKG; 1:1000) or Oc90 (CNTQSDTVDRKPTQSKPQ; 1:1000) by conventional 132 
methods (GenScript, USA) and directly labelled before immunofluorescence. Other antibodies used 133 
were Keratan Sulfate (MZ15; 1:2000; DSHB), Hair Cell Specific-1 (HCS-1; 1:500; DSHB), and 134 
acetylated-tubulin (1:500; Sigma T6793). Phalloidin (ThermoFisher A12379) was used at a 135 
concentration of 1:500. 136 

Mitotracker staining 137 

Mitotracker Red (ThermoFisher #M22425) was resuspended in DMSO (0.25 mM) and diluted to 138 
200 nM in E3 embryo medium. nco and csr embryos were then incubated in the dark for 20 minutes 139 
before removing Mitotracker solution and replacing with fresh E3 embryo medium. Samples were 140 
allowed to stabilize in the dark for 30 minutes before imaging at 21 hpf. Embryos were then 141 
phenotyped at 27 hpf. 142 

Exogenous salt solutions 143 

To test the effects of exogenous ions on otolith formation, embryos were kept in E3 Medium 144 
until early gastrulation (~10 hpf). Embryos were washed, dechorionated, and transferred to 1X Basic 145 
Solution (58 mM NaCl, 0.4 mM MgSO4 and 5 mM HEPES) supplemented with 0.7 mM potassium 146 
chloride, 0.6 mM calcium nitrate or 0.6 mM calcium chloride. Embryos were then transferred to fresh 147 
1X Basic Solution with respective supplement for the remaining development. Embryos were scored 148 
by the presence or absence of otoliths at 27 hpf and genotyped using High Resolution Melt analysis. 149 

Statistical analyses 150 

Statistical significance was calculated using Fisher’s Exact Test, G-test for Independence, and 151 
Chi-Squared Distribution. 152 

3. Results 153 

3.1 csr and nco are genetically-linked 154 

The most apparent phenotype of the homozygous recessive csr, nco, and vns mutants is that they 155 
fail to form otoliths (lapillus and sagitta) or any observable complex calcium deposits within the inner 156 
ear (Fig. 1A-D; Table S1). Furthermore, the mutant larvae are homozygous lethal by 7 days post 157 
fertilization (dpf) as the swim bladder fails to inflate (Fig. 1A’-D’) and they are unable to feed. As a 158 
result, we do not know whether asteriscus formation is affected. While it is still unknown why the 159 
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swim bladder fails to inflate when otoliths are absent, it is a common phenotype in other mutants 160 
with otolith agenesis [18-24]. Due to this commonality within csr and nco, we sought to determine if 161 
these phenotypes would complement each other. The results of the complementation test showed 162 
that some offspring failed to develop otoliths (29.25%; n=106; Table S1), supporting that nco and csr 163 
likely are allelic.  164 

3.2 Exogenous ions influence otolith nucleation in csr embryos; not nco or vns embryos 165 

As an aquatic species, the environment of zebrafish can be easily controlled and adapted to assess its 166 
impact on embryonic development. Previously, small molecules have been used to block otolith 167 
development by inhibiting otolith nucleation [10]. We hypothesized that there was an error in ion 168 
homeostasis that could be affected by exogenous solutions. In water treatments supplemented with 169 
calcium chloride (n=51), we found a significant decrease in csr penetrance in homozygous embryos 170 
(χ2=19.27, df=6; p=0.0037) compared to treatments supplemented with potassium chloride (n=46) or 171 
calcium nitrate (n=54). Additionally, we observed no significant change in nco mutant phenotype 172 
penetrance for water treatments supplemented with potassium chloride (17.76%; n=107), calcium 173 
chloride (16.67%; n=120) or calcium nitrate (16.9%; n=112)(G-test; p=0.975). Similarly, the penetrance 174 
of otolith formation in vns was not affected by exogenous salts (data not shown).  175 

Building on the hypothesis that there was an error in ion homeostasis, Mitotracker was used to 176 
mark mitochondria-rich cells (i.e. presumptive ionocytes) in csr and nco embryos. While nco embryos 177 
appear normal, we observed that csr embryos show a lack of Mitotracker localization at 21 hpf (Fig. 178 
S1). Altogether, this suggests the nature of the nco and csr mutation, while likely allelic, are inherently 179 
different. 180 

3.3 Potentially deleterious mutations identified in polyketide synthase for csr, nco, and vns 181 

To positionally clone the gene responsible for nco and csr, we used complementary approaches 182 
for each strain. MMAPPR analysis of nco-derived RNA sequencing (Fig. 2A) [24] and MegaMapper 183 
analysis of csr-derived whole genome sequencing (Fig. 2B) [27] both identified a genomic region with 184 
high homology surrounding the pks1 locus. While several other genes were in that region, a previous 185 
study on otolith biomineralization in Japanese medaka made pks1 the likely gene candidate [25]. 186 
Potentially deleterious mutations were identified in pks1 for csr (A911P) and nco (L681*), which were 187 
both located within a conserved acyl transferase domain (Fig. 2C). Furthermore, a deleterious 188 
mutation in vns (G239R) was serendipitously found to be linked to a neighboring gene during a 189 
separate study. The deleterious point mutation was identified by Sanger sequencing of the pks1 locus 190 
and confirmed by relatively high penetrance of otolith agenesis (95%). 191 

3.4 Japanese medaka pks1 mRNA or plasmid DNA rescues otolith biomineralization in csr, nco, and vns 192 

While the last common ancestor of Japanese medaka and zebrafish was estimated to be 150 193 
million years ago [30], we sought to assess if the function of pks1 within the inner ear is conserved. 194 
We injected Japanese medaka pks1 mRNA or DNA into single-cell embryos of csr, nco, and vns 195 
heterozygous incrosses. Microinjection of Japanese medaka pks1 mRNA (300 ng/µL) rescued otolith 196 
biomineralization in both csr (p<0.0001; χ²<0.0001; n=93) and nco (p=0.0032; χ²=0.0022; n=84) mutants 197 
(Fig. 3B; Table S1). Additionally, microinjection of the Japanese medaka pks1 plasmid (20 ng/uL) 198 
provided by Dr. Takeda rescued otolith biomineralization in vns (p<0.0001; χ²=0.0004; n=39). Using 199 

237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295



  

 

site-directed mutagenesis, we introduced the non-synonymous mutation (A911P) in csr to the 200 
Japanese medaka mRNA construct (L905P). We repeated injections into single-cell embryos and 201 
failed to rescue otolith biomineralization in csr and nco. WT medaka pks1, but not pks1L905P, rescued 202 
otolith biomineralization in csr and nco embryos (Fig. 3C; Table S1). 203 

3.5 Ingenuity pathway analysis of nco embryos  204 

While pks1 is thought to produce an otolith nucleation factor [25], its broader role during inner 205 
ear development is unknown. Ingenuity Pathway Analysis of nco at 24 hpf identified eNOS and 206 
Endothelin-1 signaling as the top up- and down-regulated pathways, respectively (Fig. 4A). Among 207 
the down regulated genes was rdh12l, a gene adjacent to pks1, suggesting that there is local control of 208 
transcription at that locus. mir-92a, the top down-regulated gene, has a predicted binding site in the 209 
3’UTR of rdh12l (Fig. S2) [31]. In addition, several genes listed in the top ten up- or down-regulated 210 
lists are also enriched in adult mechanosensory hair cells such as il11b, fosab, fosb, fosl1a, socs3a, scg5, 211 
and dnaaf3 (Figs. 4B-C) [32]. Of these genes, il11b is up-regulated during neuromast hair cell 212 
regeneration [33]. Notably, dnaaf3 causes primary ciliary dyskinesia and morpholino knockdown of 213 
dnaaf3 causes abnormal otolith growth [34]. While its role in inner ear development is unknown, scg5 214 
is expressed within the anterior and posterior poles of the otic placode during the critical period of 215 
otolith nucleation [35]. 216 

3.6 Aberrant expression of proteins involved in otolith development in csr and nco 217 

In mammalian inner ear development, Oc90 is necessary for otoconial seeding and nucleation 218 
[13, 14]. Similarly, the role of Oc90 is evolutionarily-conserved in zebrafish and has been previously 219 
thought to be necessary for otolith nucleation [18]. Using immunofluorescence (IF), we saw diffuse 220 
expression of Oc90 in csr and nco otocysts (Figs. 5B-D), which demonstrated that Oc90 expression 221 
within the otocyst is not sufficient for otolith biomineralization in zebrafish. Similarly, normal 222 
localization of Otogelin (Otog), a protein required for otolith tethering in the otolithic membrane is 223 
not sufficient for Oc90 attachment. Additionally, other otoconins that are important for calcium 224 
deposition and growth were detected with diffuse expression within the otocyst such as Starmaker 225 
and Keratan Sulfate (data not shown) [36, 37]. 226 

3.7 Polyketide synthase as an otolith precursor binding factor?  227 

Otolith nucleation is thought to be mediated by a tether-cell specific otolith precursor binding 228 
factor (OPBF), which lays the foundation for the successive biomineralization of the otolith [9, 11, 38]. 229 
The presence of an OPBF was proposed almost two decades ago and its identification proves to be 230 
elusive [38]. Recent studies suggest that one or more OPBFs are expressed by tether-cells and help to 231 
mediate otolith nucleation by binding other OPPs [9, 11, 39].  232 

We sought to assess if pks1 or its enzymatic product is a tether-cell specific nucleation factor. 233 
While medaka has diffuse pks1 mRNA expression in the otic epithelium [25], we hypothesized that 234 
the expression might be restricted to hair cells. First, using publicly available RNA-seq data, we found 235 
that pks1 mRNA is enriched (7.46-fold increase) in adult mechanosensory hair cells compared to 236 
support cells within the zebrafish inner ear (Table S2). Additionally, this data suggests pks1 mRNA 237 
to be transcriptionally regulated in support cells. Support cells predominantly express a 300bp region 238 
of the 5’UTR of the pks1 transcript while hair cells express the full open reading frame [32]. A search 239 
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for transcriptional regulatory motifs in the 5’UTR of pks1 found a predicted binding site for TCF-3 240 
[40], a transcription factor highly expressed in adult mechanosensory hair cells [32]. While the role of 241 
TCF-3 in the inner ear is unknown, it is expressed within the otic vesicle during the critical period of 242 
otolith nucleation [35]. 243 

Then, we demonstrated that the total number of hair cells remain unchanged during early 244 
development in nco, suggesting there are no differences in tether cell maturation and maintenance 245 
(Figs. 5E-G). Using RT-PCR, we detected pks1 mRNA during the critical period of otolith nucleation 246 
(Fig. S3). However, in situ data showed ubiquitous expression of pks1 in the otic vesicle of zebrafish 247 
[25]. While pks1 might be enriched in adult hair cells, early expression shows that it is ubiquitously 248 
expressed in the otic vesicle and, therefore, not the tether-cell specific OPBF. 249 

4. Discussion 250 

The homozygous recessive mutants csr, nco, and vns were chosen for this study because each 251 
lack the necessary factors such as an OPBF for otolith seeding and biomineralization. To determine 252 
the genes responsible for otolith agenesis in these mutants, we used two complementary approaches. 253 
The first approach was Whole Genome Sequencing of the csr mutant genome to identify regions of 254 
high homology. This indeed was difficult as the csr background strain was heavily inbred, resulting 255 
in multiple peaks of high homology. Since we demonstrated csr and nco are genetically-linked, we 256 
sought to further clarify the responsible locus using a second method (i.e. RNA-seq of the nco 257 
transcriptome) for comparison. This result pinpointed a region of high homology near the end of the 258 
24th chromosome. While deciphering potentially deleterious mutations within that region, we 259 
focused on pks1 following evidence that it is responsible for otolith nucleation in Japanese medaka 260 
[25]. While these species are evolutionarily divergent, the shared phenotype between medaka and 261 
our mutants suggested that the role of pks1 is conserved. As a result, we chose to use medaka pks1 262 
nucleic acid to rescue otolith formation in csr, nco and vns mutants. Similarities can also be drawn 263 
with other zebrafish mutants such as keinstein, which has diffused expression of Starmaker within the 264 
otocyst and exhibits similar circling swimming behaviors [41, 42]. Furthermore, keinstein may be 265 
another pks1 allele due to its predicted chromosomal location [43]. 266 

While WT medaka pks1 rescues otolith biomineralization in csr and nco, differences in penetrance 267 
of exogenous ions on otolith formation suggested the nature of each mutation is fundamentally 268 
different. This was confirmed by Sanger sequencing that nco has a premature stop codon while csr 269 
likely makes a defective protein that may be stabilized by exogenous ions. This defective protein may 270 
be the explanation for the differences in Mitotracker localization in csr. Due to its surface stain 271 
expression, we hypothesize that Mitotracker was localized to mitochondria-rich ionocytes [44]. 272 
Ionocytes have previously been implicated in otolith formation as mutations in gcm2, which is 273 
responsible for ionocyte maturation, leads to otolith agenesis [20, 45]. We hypothesize that the 274 
endolymph in csr and nco mutants has the necessary components for otolith nucleation [2] but lack a 275 
trigger factor produced by pks1. The absence of pks1 does not visibly appear to affect hair cell 276 
development that are required for otolith nucleation either [9]. It has been previously suggested that 277 
apolipoprotein could potentially bind polyketide synthase [4, 25]. Given our RNA-seq analysis of nco, 278 
we see no significant change in any apolipoprotein expression. Publicly-available in situ data does 279 
not support Apolipoprotein expression within the inner ear [35]. Additionally, IF of csr and nco 280 
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embryos demonstrated that expression of a critical otoconial seeding protein, Oc90, within the otocyst 281 
is not sufficient for otolith biomineralization in the presence of the otolithic membrane.  282 

One caveat is that the penetrance of otolith formation is influenced by the genetic background 283 
of zebrafish. When treated with the small molecule 31N3, WT embryos in the AB/EKW background 284 
fail to develop otoliths [10]. However, 31N3 fails to inhibit otolith formation in the TL and TU strains, 285 
suggesting that there are potential genetic modifiers that influence otolith nucleation in these 286 
backgrounds. While the csr mutation (A911P) leads to otolith agenesis in the AB background, 287 
homozygosity at the locus is compatible with proper development in the AB/TL background (data 288 
not shown). This suggests csr may be a hypomorphic allele and the AB background can overcome the 289 
loss of Pks1 function with enhanced ion flux. Ironically, the mutant phenotype was lost when csr was 290 
outcrossed to the WIK background. It was only until csr was backcrossed to the AB background that 291 
the mutants were recovered. Altogether, we suggest that the AB background heavily influences the 292 
penetrance of otolith formation.  293 

While pks1 likely acts as an enzyme whose expression is enriched in adult mechanosensory hair 294 
cells [32], its product is required for otolith nucleation in zebrafish. However, the molecular function 295 
of pks1 remains unknown. Using nco RNA-seq data, we performed an Ingenuity Pathway Analysis, 296 
which identified eNOS and Endothelin-1 signaling as the most up- and down-regulated pathways, 297 
respectively. eNOS signaling could be impacted by pks1 metabolites such as iromycin, which has been 298 
shown to inhibit this pathway [46]. Both eNOS and Endothelin-1 have been implicated in inner ear 299 
development and function. Notably, it has been demonstrated that these pathways are inversely 300 
related in sensorineural hearing loss [47]. An example of this is Waardenburg syndrome, caused by 301 
mutations in endothelins, which cause abnormal pigmentation and sensorineural hearing loss [48]. 302 
During early development, Endothelin-1 mRNA turns on during the critical period of otolith 303 
nucleation [35, 49] and is detected in the otic vesicle at 24 hpf [50]. Endothelin-1 and its receptor 304 
(ednraa) are both enriched in adult zebrafish inner ear support cells [32]. Additionally, Endothelin-1 305 
has been identified as a potential modifier of osteoblast function to increase bone mineralization [51]. 306 
Furthermore, Endothelin-1 has been implicated with the FOS-family of genes (fosab, fosb, and fosl1a) 307 
and socs3a, which are all differentially expressed in nco at 24 hpf. These genes are all part of a 308 
regulatory network during hypergravity-mediated bone formation [52]. Furthermore, the presence 309 
of osteoblast-associated proteins within teleost otoliths suggest a common mechanism between bone 310 
mineralization and otolith biomineralization [4]. Future studies will attempt to clarify the roles of 311 
Endothelin-1 and eNOS signaling pathways during biomineralization events. 312 
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 439 
Figure 1: (A-D) The csr, nco, and vns mutant phenotypes fail to form otoliths within the inner ear. However, 440 
semicircular canal formation appears to be normal. (A’-D’) All mutants fail to inflate their swim bladders, which 441 
is lethal. Imaged at 5 days post fertilization (dpf). Magnification 6.3X. (*) indicates swim bladder.   442 
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 443 
Figure 2: Complementary approaches for causative gene discovery. MMAPPR analysis of RNA sequencing data 444 
for nco (A) and whole genome homology mapping for csr (B) identified regions of high homology on the 24th 445 
chormosome near the pks1 locus (~33 Gb). (C) Deleterious mutations were identified in pks1 for nco and csr within 446 
the acyl transferase (AT) domain and vns within the polyketide synthase (PKS) domain. Sanger sequencing 447 
confirmed SNPs in csr, nco, and vns mutants. Other domains include Ketoacyl Synthetase (KS), Medium Chain 448 
Reductase (MDR), NAD(P)-dependent dehydrogenase (NDD), and Phosphopanthetheine-Binding (PP).  449 
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 450 
3: WT pks1 nucleic acid rescues otolith formation in csr, nco, and vns. (A) Normal frequencies of mutant phenotypes in each uninjected strain. All four pairings follow homozygous 451 
recessive mode of inheritance. (B) Results of injected embryos show that Japanese medaka pks1 mRNA (300 pg) rescues both csr and nco mutants and pks1 DNA (20 pg) rescues vns 452 
mutants. (*, p < 0.0001, paired t-test)(**, p < 0.0032, paired t-test)(***, p = 0.0001, paired t-test),. Site-directed mutagenesis was used to introduce a conserved mutation in csr (A911P) 453 
into the Japanese medaka construct (L905P) (C) Injection of pks1L905P (300 pg) fails to rescue csr or nco mutant phenotypes.   454 

768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808



  

 

 455 
Figure 4: Gene expression and pathway analysis of nco embryos. (A) Ingenuity Pathway Analysis shows the top up-regulated and down-regulated pathways, which are eNOS 456 
Signaling and Endothelin-1 Signaling, respectively. Positive z-score indicated increased mRNA levels. Negative z-score indicates decreased mRNA levels. No change in mRNA levels 457 
results in a z-score of zero. (B) Differential gene expression in the top up-regulated genes. (C) Differential gene expression in the top down-regulated genes. (**, expressed in adult 458 
zebrafish mechanosensory hair cells) [32].  459 
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 461 

Figure 5: Aberrant expression of proteins invovled in otolith development in csr and nco. (A) Schematic of anterior macula (AM) tethered to otolith at 27 hpf. (B) In WT, Otoconin-90 462 
(Oc90) is expressed within the mineralized otolith, which is situated atop the otolithic membrane (Otogelin, or Otog), at 27 hpf. Scale bar = 5 μm. (C-D) Oc90 has diffuse expression 463 
within the otocyst of csr and nco. In csr and nco, Otog is localized near the apical surface of hair cells. (E-F) Expression showing hair cells in WT and nco larvae at 5dpf. Scale bar = 25 464 
μm. (G) Quantification of hair cell numbers in the posterior and anterior macula of WT and nco (n = 4). 465 
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Appendix A- Supplemental Material 466 

 467 
Figure S1: Spatial differences in mitochondrial membrane potentials. (A) While Mitotracker marks active 468 
mitochondria in WT, (B) csr embryos show a lack of Mitotracker expression during early development. Arrow 469 
indicates otic vesicle. 470 
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 471 

Figure S2: miR-92a binding site in the 3’ UTR of rdh12l. TargetScanFish 6.2 of rhd12l in zebrafish shows potential microRNA binding sites including miR-92a, which is the most 472 
down-regulated gene in nco embryos at 24 hpf. 473 
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 474 
Figure S3: pks1 expression during early inner ear development. Using primers from distinct exons and total 475 
RNA from several developmental stages, RT-PCR was used to asses expression of pks1 and actb1 as a control. 476 
Amplification of pks1 cDNA is predicted to produce a 602bp product, while genomic contamination should 477 
produce a 789bp product. actb1 cDNA should yield a 249bp product, while gDNA should yield a 349bp product.  478 
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 479 
Table S1. Frequency of WT and mutant phenotypes for uninjected and injected csr, nco, and vns embryos.  480 

Strain Wild-type Otoliths absent Total (n)
csr 83.81% 16.19% 105
nco 80.70% 19.30% 57

csr  x nco 77.37% 22.63% 137
vns 60.71% 39.29% 56

csr + WT mRNA 100.00% 0.00% 93
nco + WT mRNA 96.43% 3.57% 84

csr + L905P mRNA 79.35% 20.65% 92
nco + L905P mRNA 76.60% 23.40% 94

vns  + WT DNA 94.87% 5.13% 39
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 481 
Table S2. Differential expression of pks1 in adult zebrafish hair and support cells. 482 

Hair cells (SRA) Total Reads ORF - Read Counts ORF RPKM 5' UTR Read Counts
SRX3022431 14413064 40 0.389182443 0
SRX3022432 100567605 390 0.543821111 0
SRX3022433 50912071 151 0.415916114 0

Support cells (SRA) Total Reads ORF - Read Counts ORF RPKM 5' UTR Read Counts
SRX3022434 54844980 3 0.007670681 14
SRX3022435 59741039 0 0 38
SRX3022436 45498619 0 0 14

LOG2
Hair cells RPKM average - ORF 0.44963989 -1.1531
Hair cells SD 0.082651371
Support cells RPKM average - ORF 0.002556894 -8.611
Support cells SD 0.00442867

Fold Change 7.4579
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