188 research outputs found
Live Hot, Die Young: Transmission Distortion in Recombination Hotspots
There is strong evidence that hotspots of meiotic recombination in humans are transient features of the genome. For example, hotspot locations are not shared between human and chimpanzee. Biased gene conversion in favor of alleles that locally disrupt hotspots is a possible explanation of the short lifespan of hotspots. We investigate the implications of such a bias on human hotspots and their evolution. Our results demonstrate that gene conversion bias is a sufficiently strong force to produce the observed lack of sharing of intense hotspots between species, although sharing may be much more common for weaker hotspots. We investigate models of how hotspots arise, and find that only models in which hotspot alleles do not initially experience drive are consistent with observations of rather hot hotspots in the human genome. Mutations acting against drive cannot successfully introduce such hotspots into the population, even if there is direct selection for higher recombination rates, such as to ensure correct segregation during meiosis. We explore the impact of hotspot alleles on patterns of haplotype variation, and show that such alleles mask their presence in population genetic data, making them difficult to detect
Selective Constraint on Noncoding Regions of Hominid Genomes
An important challenge for human evolutionary biology is to understand the genetic basis of human–chimpanzee differences. One influential idea holds that such differences depend, to a large extent, on adaptive changes in gene expression. An important step in assessing this hypothesis involves gaining a better understanding of selective constraint on noncoding regions of hominid genomes. In noncoding sequence, functional elements are frequently small and can be separated by large nonfunctional regions. For this reason, constraint in hominid genomes is likely to be patchy. Here we use conservation in more distantly related mammals and amniotes as a way of identifying small sequence windows that are likely to be functional. We find that putatively functional noncoding elements defined in this manner are subject to significant selective constraint in hominids
A Macaque's-Eye View of Human Insertions and Deletions: Differences in Mechanisms
Insertions and deletions (indels) cause numerous genetic diseases and lead to pronounced evolutionary differences among genomes. The macaque sequences provide an opportunity to gain insights into the mechanisms generating these mutations on a genome-wide scale by establishing the polarity of indels occurring in the human lineage since its divergence from the chimpanzee. Here we apply novel regression techniques and multiscale analyses to demonstrate an extensive regional indel rate variation stemming from local fluctuations in divergence, GC content, male and female recombination rates, proximity to telomeres, and other genomic factors. We find that both replication and, surprisingly, recombination are significantly associated with the occurrence of small indels. Intriguingly, the relative inputs of replication versus recombination differ between insertions and deletions, thus the two types of mutations are likely guided in part by distinct mechanisms. Namely, insertions are more strongly associated with factors linked to recombination, while deletions are mostly associated with replication-related features. Indel as a term misleadingly groups the two types of mutations together by their effect on a sequence alignment. However, here we establish that the correct identification of a small gap as an insertion or a deletion (by use of an outgroup) is crucial to determining its mechanism of origin. In addition to providing novel insights into insertion and deletion mutagenesis, these results will assist in gap penalty modeling and eventually lead to more reliable genomic alignments
Bias of Selection on Human Copy-Number Variants
Although large-scale copy-number variation is an important contributor to conspecific genomic diversity, whether these variants frequently contribute to human phenotype differences remains unknown. If they have few functional consequences, then copy-number variants (CNVs) might be expected both to be distributed uniformly throughout the human genome and to encode genes that are characteristic of the genome as a whole. We find that human CNVs are significantly overrepresented close to telomeres and centromeres and in simple tandem repeat sequences. Additionally, human CNVs were observed to be unusually enriched in those protein-coding genes that have experienced significantly elevated synonymous and nonsynonymous nucleotide substitution rates, estimated between single human and mouse orthologues. CNV genes encode disproportionately large numbers of secreted, olfactory, and immunity proteins, although they contain fewer than expected genes associated with Mendelian disease. Despite mouse CNVs also exhibiting a significant elevation in synonymous substitution rates, in most other respects they do not differ significantly from the genomic background. Nevertheless, they encode proteins that are depleted in olfactory function, and they exhibit significantly decreased amino acid sequence divergence. Natural selection appears to have acted discriminately among human CNV genes. The significant overabundance, within human CNVs, of genes associated with olfaction, immunity, protein secretion, and elevated coding sequence divergence, indicates that a subset may have been retained in the human population due to the adaptive benefit of increased gene dosage. By contrast, the functional characteristics of mouse CNVs either suggest that advantageous gene copies have been depleted during recent selective breeding of laboratory mouse strains or suggest that they were preferentially fixed as a consequence of the larger effective population size of wild mice. It thus appears that CNV differences among mouse strains do not provide an appropriate model for large-scale sequence variations in the human population
Heterotachy in Mammalian Promoter Evolution
We have surveyed the evolutionary trends of mammalian promoters and upstream sequences, utilising large sets of experimentally supported transcription start sites (TSSs). With 30,969 well-defined TSSs from mouse and 26,341 from human, there are sufficient numbers to draw statistically meaningful conclusions and to consider differences between promoter types. Unlike previous smaller studies, we have considered the effects of insertions, deletions, and transposable elements as well as nucleotide substitutions. The rate of promoter evolution relative to that of control sequences has not been consistent between lineages nor within lineages over time. The most pronounced manifestation of this heterotachy is the increased rate of evolution in primate promoters. This increase is seen across different classes of mutation, including substitutions and micro-indel events. We investigated the relationship between promoter and coding sequence selective constraint and suggest that they are generally uncorrelated. This analysis also identified a small number of mouse promoters associated with the immune response that are under positive selection in rodents. We demonstrate significant differences in divergence between functional promoter categories and identify a category of promoters, not associated with conventional protein-coding genes, that has the highest rates of divergence across mammals. We find that evolutionary rates vary both on a fine scale within mammalian promoters and also between different functional classes of promoters. The discovery of heterotachy in promoter evolution, in particular the accelerated evolution of primate promoters, has important implications for our understanding of human evolution and for strategies to detect primate-specific regulatory elements
Comparing Patterns of Natural Selection across Species Using Selective Signatures
Comparing gene expression profiles over many different conditions has led to insights that were not obvious from single experiments. In the same way, comparing patterns of natural selection across a set of ecologically distinct species may extend what can be learned from individual genome-wide surveys. Toward this end, we show how variation in protein evolutionary rates, after correcting for genome-wide effects such as mutation rate and demographic factors, can be used to estimate the level and types of natural selection acting on genes across different species. We identify unusually rapidly and slowly evolving genes, relative to empirically derived genome-wide and gene family-specific background rates for 744 core protein families in 30 γ-proteobacterial species. We describe the pattern of fast or slow evolution across species as the “selective signature” of a gene. Selective signatures represent a profile of selection across species that is predictive of gene function: pairs of genes with correlated selective signatures are more likely to share the same cellular function, and genes in the same pathway can evolve in concert. For example, glycolysis and phenylalanine metabolism genes evolve rapidly in Idiomarina loihiensis, mirroring an ecological shift in carbon source from sugars to amino acids. In a broader context, our results suggest that the genomic landscape is organized into functional modules even at the level of natural selection, and thus it may be easier than expected to understand the complex evolutionary pressures on a cell
Alu Recombination-Mediated Structural Deletions in the Chimpanzee Genome
With more than 1.2 million copies, Alu elements are one of the most important sources of structural variation in primate genomes. Here, we compare the chimpanzee and human genomes to determine the extent of Alu recombination-mediated deletion (ARMD) in the chimpanzee genome since the divergence of the chimpanzee and human lineages (∼6 million y ago). Combining computational data analysis and experimental verification, we have identified 663 chimpanzee lineage-specific deletions (involving a total of ∼771 kb of genomic sequence) attributable to this process. The ARMD events essentially counteract the genomic expansion caused by chimpanzee-specific Alu inserts. The RefSeq databases indicate that 13 exons in six genes, annotated as either demonstrably or putatively functional in the human genome, and 299 intronic regions have been deleted through ARMDs in the chimpanzee lineage. Therefore, our data suggest that this process may contribute to the genomic and phenotypic diversity between chimpanzees and humans. In addition, we found four independent ARMD events at orthologous loci in the gorilla or orangutan genomes. This suggests that human orthologs of loci at which ARMD events have already occurred in other nonhuman primate genomes may be “at-risk” motifs for future deletions, which may subsequently contribute to human lineage-specific genetic rearrangements and disorders
A Map of Recent Positive Selection in the Human Genome
The identification of signals of very recent positive selection provides information about the adaptation of modern humans to local conditions. We report here on a genome-wide scan for signals of very recent positive selection in favor of variants that have not yet reached fixation. We describe a new analytical method for scanning single nucleotide polymorphism (SNP) data for signals of recent selection, and apply this to data from the International HapMap Project. In all three continental groups we find widespread signals of recent positive selection. Most signals are region-specific, though a significant excess are shared across groups. Contrary to some earlier low resolution studies that suggested a paucity of recent selection in sub-Saharan Africans, we find that by some measures our strongest signals of selection are from the Yoruba population. Finally, since these signals indicate the existence of genetic variants that have substantially different fitnesses, they must indicate loci that are the source of significant phenotypic variation. Though the relevant phenotypes are generally not known, such loci should be of particular interest in mapping studies of complex traits. For this purpose we have developed a set of SNPs that can be used to tag the strongest ∼250 signals of recent selection in each population
Allele Frequency Matching Between SNPs Reveals an Excess of Linkage Disequilibrium in Genic Regions of the Human Genome
Significant interest has emerged in mapping genetic susceptibility for complex traits through whole-genome association studies. These studies rely on the extent of association, i.e., linkage disequilibrium (LD), between single nucleotide polymorphisms (SNPs) across the human genome. LD describes the nonrandom association between SNP pairs and can be used as a metric when designing maximally informative panels of SNPs for association studies in human populations. Using data from the 1.58 million SNPs genotyped by Perlegen, we explored the allele frequency dependence of the LD statistic r (2) both empirically and theoretically. We show that average r (2) values between SNPs unmatched for allele frequency are always limited to much less than 1 (theoretical [Image: see text] approximately 0.46 to 0.57 for this dataset). Frequency matching of SNP pairs provides a more sensitive measure for assessing the average decay of LD and generates average r (2) values across nearly the entire informative range (from 0 to 0.89 through 0.95). Additionally, we analyzed the extent of perfect LD (r (2) = 1.0) using frequency-matched SNPs and found significant differences in the extent of LD in genic regions versus intergenic regions. The SNP pairs exhibiting perfect LD showed a significant bias for derived, nonancestral alleles, providing evidence for positive natural selection in the human genome
The Molecular Anatomy of Spontaneous Germline Mutations in Human Testes
The frequency of the most common sporadic Apert syndrome mutation (C755G) in the human fibroblast growth factor receptor 2 gene (FGFR2) is 100–1,000 times higher than expected from average nucleotide substitution rates based on evolutionary studies and the incidence of human genetic diseases. To determine if this increased frequency was due to the nucleotide site having the properties of a mutation hot spot, or some other explanation, we developed a new experimental approach. We examined the spatial distribution of the frequency of the C755G mutation in the germline by dividing four testes from two normal individuals each into several hundred pieces, and, using a highly sensitive PCR assay, we measured the mutation frequency of each piece. We discovered that each testis was characterized by rare foci with mutation frequencies 103 to >104 times higher than the rest of the testis regions. Using a model based on what is known about human germline development forced us to reject (p < 10−6) the idea that the C755G mutation arises more frequently because this nucleotide simply has a higher than average mutation rate (hot spot model). This is true regardless of whether mutation is dependent or independent of cell division. An alternate model was examined where positive selection acts on adult self-renewing Ap spermatogonial cells (SrAp) carrying this mutation such that, instead of only replacing themselves, they occasionally produce two SrAp cells. This model could not be rejected given our observed data. Unlike the disease site, similar analysis of C-to-G mutations at a control nucleotide site in one testis pair failed to find any foci with high mutation frequencies. The rejection of the hot spot model and lack of rejection of a selection model for the C755G mutation, along with other data, provides strong support for the proposal that positive selection in the testis can act to increase the frequency of premeiotic germ cells carrying a mutation deleterious to an offspring, thereby unfavorably altering the mutational load in humans. Studying the anatomical distribution of germline mutations can provide new insights into genetic disease and evolutionary change
- …