2,819 research outputs found

    Distinguishing n Hamiltonians on C^n by a single measurement

    Get PDF
    If an experimentalist wants to decide which one of n possible Hamiltonians acting on an n dimensional Hilbert space is present, he can conjugate the time evolution by an appropriate sequence of known unitary transformations in such a way that the different Hamiltonians result in mutual orthogonal final states. We present a general scheme providing such a sequence.Comment: 4 pages, Revte

    Effects of Noise, Correlations and errors in the preparation of initial states in Quantum Simulations

    Full text link
    In principle a quantum system could be used to simulate another quantum system. The purpose of such a simulation would be to obtain information about problems which cannot be simulated with a classical computer due to the exponential increase of the Hilbert space with the size of the system and which cannot be measured or controlled in an actual experiment. The system will interact with the surrounding environment, with the other particles in the system and be implemented using imperfect controls making it subject to noise. It has been suggested that noise does not need to be controlled to the same extent as it must be for general quantum computing. However the effects of noise in quantum simulations and how to treat them are not completely understood. In this paper we study an existing quantum algorithm for the one-dimensional Fano-Anderson model to be simulated using a liquid-state NMR device. We calculate the evolution of different initial states in the original model, and then we add interacting spins to simulate a more realistic situation. We find that states which are entangled with their environment, and sometimes correlated but not necessarily entangled have an evolution which is described by maps which are not completely positive. We discuss the conditions for this to occur and also the implications.Comment: Revtex 4-1, 14 pages, 21 figures, version 2 has typos corrected and acknowledgement adde

    Evolution of size-dependent flowering in a variable environment: construction and analysis of a stochastic integral projection model

    Get PDF
    Understanding why individuals delay reproduction is a classic problem in evolutionary biology. In plants, the study of reproductive delays is complicated because growth and survival can be size and age dependent, individuals of the same size can grow by different amounts and there is temporal variation in the environment. We extend the recently developed integral projection approach to include size- and age-dependent demography and temporal variation. The technique is then applied to a long-term individually structured dataset for Carlina vulgaris, a monocarpic thistle. The parameterized model has excellent descriptive properties in terms of both the population size and the distributions of sizes within each age class. In Carlina, the probability of flowering depends on both plant size and age. We use the parameterized model to predict this relationship, using the evolutionarily stable strategy approach. Considering each year separately, we show that both the direction and the magnitude of selection on the flowering strategy vary from year to year. Provided the flowering strategy is constrained, so it cannot be a step function, the model accurately predicts the average size at flowering. Elasticity analysis is used to partition the size- and age-specific contributions to the stochastic growth rate, λs. We use λs to construct fitness landscapes and show how different forms of stochasticity influence its topography. We prove the existence of a unique stochastic growth rate, λs, which is independent of the initial population vector, and show that Tuljapurkar's perturbation analysis for log(λs) can be used to calculate elasticities

    Decoherence and Quantum Walks: anomalous diffusion and ballistic tails

    Get PDF
    The common perception is that strong coupling to the environment will always render the evolution of the system density matrix quasi-classical (in fact, diffusive) in the long time limit. We present here a counter-example, in which a particle makes quantum transitions between the sites of a d-dimensional hypercubic lattice whilst strongly coupled to a bath of two-level systems which 'record' the transitions. The long-time evolution of an initial wave packet is found to be most unusual: the mean square displacement of the particle density matrix shows long-range ballitic behaviour, but simultaneously a kind of weakly-localised behaviour near the origin. This result may have important implications for the design of quantum computing algorithms, since it describes a class of quantum walks.Comment: 4 pages, 1 figur

    Discrete-time quantum walks on one-dimensional lattices

    Full text link
    In this paper, we study discrete-time quantum walks on one-dimensional lattices. We find that the coherent dynamics depends on the initial states and coin parameters. For infinite size of lattice, we derive an explicit expression for the return probability, which shows scaling behavior P(0,t)∼t−1P(0,t)\sim t^{-1} and does not depends on the initial states of the walk. In the long-time limit, the probability distribution shows various patterns, depending on the initial states, coin parameters and the lattice size. The average mixing time MϵM_{\epsilon} closes to the limiting probability in linear NN (size of the lattice) for large values of thresholds ϵ\epsilon. Finally, we introduce another kind of quantum walk on infinite or even-numbered size of lattices, and show that the walk is equivalent to the traditional quantum walk with symmetrical initial state and coin parameter.Comment: 17 pages research not

    Photon collection from a trapped ion--cavity system

    Full text link
    We present the design and implementation of a trapped ion cavity QED system. A single ytterbium ion is confined by a micron-scale ion trap inside a 2 mm optical cavity. The ion is coherently pumped by near resonant laser light while the cavity output is monitored as a function of pump intensity and cavity detuning. We observe a Purcell enhancement of scattered light into the solid angle subtended by the optical cavity, as well as a three-peak structure arising from strongly driving the atom. This system can be integrated into existing atom{photon quantum network protocols and is a pathway towards an efficient atom{photon quantum interface

    Perspectives of paediatric hospital staff on factors influencing the sustainability and spread of a safety quality improvement programme

    Get PDF
    OBJECTIVE: Situation Awareness For Everyone (SAFE) is a quality improvement programme aiming to improve situation awareness in paediatric clinical teams. The aim of our study was to examine hospital staff perceptions of the facilitators and barriers/challenges to the sustaining and subsequent spread of the huddle, the key intervention of the SAFE programme. SETTING: Interviews were held on two wards in two children hospitals and on two children wards in two district general hospitals. METHOD: Semistructured interviews were conducted with 23 staff members from four National Health Service paediatric wards. A deductive thematic analysis was conducted, drawing on an existing framework, which groups the factors influencing programme sustainability into four categories: innovation, leadership, process and context. PARTICIPANTS: 23 staff in two children’s hospitals and two children’s wards across four UK hospitals, comprising of nurses and doctors, administration or housekeeping staff, ward managers and matrons, and allied professionals. PRIMARY OUTCOME: Understanding factors contributing to the sustaining and spread of a quality improvement intervention. RESULTS: Perceptions of the benefits, purpose and fit of the huddle, team commitment, sharing learning, adaptation of the method and senior leadership were identified as facilitators. High staff turnover, large multiple specialty medical staff teams, lack of senior leadership and dislike of change were identified as barriers/challenges. CONCLUSIONS: Sustaining and spreading quality improvement interventions in a complex clinical setting requires understanding of the interplay between the actual innovation and existing leadership, process and contextual factors. These must be considered at the planning stage of an innovation to maximise the potential for sustainability and spread to other settings

    A more representative chamber: representation and the House of Lords

    Get PDF
    Since 1997 there has been substantive reform of the House of Lords in an effort to make the chamber ‘more democratic and more representative’. Whilst the Labour government failed to press ahead with any of the proposed plans for further reform following the removal of the bulk of the hereditary peers in 1999, it remained committed to the notion that such reform must make the second chamber ‘more representative’. The coalition government's programme advocates a long-term aspiration for a House wholly or mainly elected on the basis of proportional representation, and a short-term approach based on additional appointments to ensure a balance of the parties. What is clear in all of these proposals for reform is a desire for the House of Lords to become more representative than it is at present. However, what is less clear is what is meant by ‘representative’ – who the House of Lords is supposed to represent, and what form representation will take. Moreover, in proposing to make the chamber more representative, either through appointment or election, little attention has been paid to how the current House of Lords provides representation. This article examines these questions in the context of Pitkin's classic conceptions of representation and peers' attitudes towards their own representative rol

    Single-qubit unitary gates by graph scattering

    Full text link
    We consider the effects of plane-wave states scattering off finite graphs, as an approach to implementing single-qubit unitary operations within the continuous-time quantum walk framework of universal quantum computation. Four semi-infinite tails are attached at arbitrary points of a given graph, representing the input and output registers of a single qubit. For a range of momentum eigenstates, we enumerate all of the graphs with up to n=9n=9 vertices for which the scattering implements a single-qubit gate. As nn increases, the number of new unitary operations increases exponentially, and for n>6n>6 the majority correspond to rotations about axes distributed roughly uniformly across the Bloch sphere. Rotations by both rational and irrational multiples of π\pi are found.Comment: 8 pages, 7 figure
    • …
    corecore