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Understanding why individuals delay reproduction is a classic problem in evolutionary biology. In plants,

the study of reproductive delays is complicated because growth and survival can be size and age dependent,

individuals of the same size can grow by different amounts and there is temporal variation in the environ-

ment. We extend the recently developed integral projection approach to include size- and age-dependent

demography and temporal variation. The technique is then applied to a long-term individually structured

dataset for Carlina vulgaris, a monocarpic thistle. The parameterized model has excellent descriptive

properties in terms of both the population size and the distributions of sizes within each age class. In

Carlina, the probability of flowering depends on both plant size and age. We use the parameterized model

to predict this relationship, using the evolutionarily stable strategy approach. Considering each year separ-

ately, we show that both the direction and the magnitude of selection on the flowering strategy vary from

year to year. Provided the flowering strategy is constrained, so it cannot be a step function, the model

accurately predicts the average size at flowering. Elasticity analysis is used to partition the size- and age-

specific contributions to the stochastic growth rate, �s. We use �s to construct fitness landscapes and show

how different forms of stochasticity influence its topography. We prove the existence of a unique stochastic

growth rate, �s, which is independent of the initial population vector, and show that Tuljapurkar’s pertur-

bation analysis for log(�s) can be used to calculate elasticities.

Keywords: fluctuating selection; fitness landscape; stochastic growth rate; evolutionarily stable strategy

1. INTRODUCTION

Natural systems are often highly variable, yet the majority

of life-history studies assume a constant density-inde-

pendent environment (reviews in Roff 1992 and Stearns

1992). These assumptions allow fitness to be assessed in

terms of simple measures of population growth rate such

as r, the intrinsic rate of increase, or R0, the net repro-

ductive rate (Charlesworth 1994). However, this approach

is appropriate only in a constant environment, where popu-

lation growth is unconstrained or particular forms of den-

sity dependence operate (Mylius & Diekmann 1995).

When there is environmental stochasticity or a non-equilib-

rium attractor, theory predicts that the fitness of a given

life-history strategy may be quite different (Tuljapurkar

1990; Rand et al. 1994). For example, in a density-regu-

lated population the fitness of a strategy depends on the

other life histories present. Under such conditions, fitness

should be measured using the ‘invasion exponent’ �, which

is the logarithmic growth rate of an invading population

growing in an environment defined by the resident popu-

lation (Metz et al. 1992; Mylius & Diekmann 1995). Fail-

ure to use invasibility analysis based on � may result in
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imprecise or even qualitatively incorrect predictions about

optimal life-history strategies.

Typically, the demography of a structured population is

investigated by constructing a matrix model, where indi-

viduals are placed into discrete categories defined by age,

stage or size class (Caswell 2001). However, such models

are not strictly appropriate for continuously structured

populations, as the choice of categories may affect the pre-

dictions of the model (Easterling et al. 2000). The individ-

ual-based approach provides an alternative for modelling

continuously structured populations. However, though

the individual-based approach is flexible, it is compu-

tationally inefficient and the underlying models are often

difficult to describe. The recently developed integral pro-

jection model provides an elegant framework for pro-

jecting a continuously structured population in discrete

time (Easterling et al. 2000; Rees & Rose 2002; Childs et

al. 2003), yet until now this approach was limited to con-

stant environments. We demonstrate how it is possible to

extend the integral projection model to represent a stoch-

astic density-dependent environment, and further develop

the approach to include an additional discrete structuring

variable such as age. Coupled with modern techniques of

invasibility analysis, this approach allows detailed assess-

ment of the role of stochasticity in shaping evolution,

using simple field data.
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We use these techniques to explore why organisms defer

reproduction, a classic problem in evolutionary biology

(Cole 1954). The main benefits of early reproduction

accrue through reductions in mortality and generation

time, while the costs of early reproduction are reduced

fecundity and/or quality of offspring (Cole 1954; Roff

1992; Stearns 1992). In plants, the study of reproductive

delays is complicated because plants vary continuously in

size and there is enormous variation in growth between

individuals. Several studies have attempted to predict the

optimal size of flowering in semelparous plants, using a

variety of approaches. These approaches include analytical

approximations, dynamic state variable models or compu-

tationally expensive individual-based models (Kachi &

Hirose 1985; de Jong et al. 1989, 2000; Wesselingh et al.

1997; Rees et al. 1999, 2000; Rees & Rose 2002; Rose

et al. 2002). Rees et al. (1999) compared these different

approaches by developing a series of parameterized demo-

graphic models of the monocarpic thistle Onopordum illyr-

icum and found that an accurate prediction of flowering

size was possible only when using an individual-based

model. More recently, Rose et al. (2002) were able to pre-

dict the optimal flowering size of another monocarpic

thistle, Carlina vulgaris, using an individual-based

approach. Both these studies emphasized the need to

incorporate stochastic variation into life-history analyses.

We explore the evolution of size- and age-dependent

flowering in the monocarpic thistle C. vulgaris. The prob-

ability of flowering in Carlina, as in several other monocar-

pic species, is a function of plant size and age (Klinkhamer

et al. 1987; Rees et al. 1999; Rose et al. 2002). First, we

outline the construction of stochastic integral projection

models for monocarpic plants with size- and age-

dependent demographic rates. We then summarize the

size- and age-dependent demography of Carlina. Using

invasibility analysis, we then test whether the estimated

strategy is adaptive in a stochastic environment. We gener-

ate fitness landscapes under different stochasticity regimes

to test whether they are consistent with our interpretation

of the evolutionarily stable strategy (ESS) calculations.

Finally, we carry out elasticity analysis as a further com-

parison of mutant fitness in constant and stochastic

environments. We prove the existence of a unique stochas-

tic growth rate, �s, which is independent of the initial

population vector for the stochastic integral projection

model, and show that Tuljapurkar’s perturbation analysis

for log(�s) can be used to calculate elasticities

(Tuljapurkar 1990).

2. METHODS

(a) Stochastic integral projection models

The integral projection model can be used to describe how a

continuously size-structured population changes in discrete time

(Easterling et al. 2000). The state of the population is described

by a probability density function, n(x,t), which can intuitively be

thought of as the proportion of individuals that are of size x at

time t. The integral projection model for the proportion of indi-

viduals that are of size y at time t � 1, 1 year later, is then

given by

Proc. R. Soc. Lond. B (2004)

n(y ,t � 1) = �
�

[ p(x,y) � f (x,y)]n(x,t)dx

= �
�

k(y ,x)n(x,t)dx, (2.1)

where k(y ,x), known as the kernel, describes all possible tran-

sitions from size x to size y , including births. The integration is

over the set of all possible sizes, �. The kernel is composed of

two parts, a fecundity function, f(x,y), and a survival–growth

function, p(x,y). To include environmental stochasticity we

imagine that a model linking the environment to the demo-

graphic rates has been defined. This gives rise to a series of ker-

nels k(0)(x,y), k(1)(x,y), ..., k(t)(x,y) describing the environment

at each time-step until year t. The stochastic integral projection

model is then given by

n(y ,t � 1) = �
�

k(t)(x,y)n(x,t)dx. (2.2)

To extend this basic model to include size- and age-dependent

demography we define na(y ,t) to be the probability density func-

tion for individuals of size y and age a in year t (see Childs et al.

2003). The stochastic integral projection model then becomes

n0(y ,t � 1) = �m
a = 0

�
�

f (t)
a (x,y)na(x,t)dx a = 0,

na(y ,t � 1) = �
�

p(t)
a � 1(x,y)na � 1(x,t)dx a � 0,

(2.3)

where f (t)
a (x,y) is the fecundity function, p(t)

a (x,y) is the survival–

growth function of plants of size x and age a in year t, and m is

maximum plant age. These functions are referred to collectively

as the kernel component functions. For a numerical solution, it

is convenient to write the model in matrix form as

n(y ,t � 1) = �
�

K (t)n(x,t)dx, (2.4)

where K is the matrix

K (t) = �
f (t)

0 (x,y) f (t)
1 (x,y) % f (t)

m � 1(x,y) f (t)
m (x,y)

p(t)
0 (x,y) 0 % 0 0

� p(t)
1 (x,y) � �

�
...

0 0 % p(t)
m � 1(x,y) 0

� (2.5)

and n(y ,t) = (n0(y,t), n1(y,t), ..., nm(y,t))T. To solve these models

we use numerical integration methods (Easterling 1998). If each

component function is evaluated at q evenly spaced quadrature

mesh points, yi, and w is the quadrature weight (difference between

successive yi), we can then approximate equation (2.4) as

n(t � 1) = K̃ (t)Dn(t), (2.6)

where n(t) = (n0(y0,t), ..., n0(yq,t), ..., nm(y0,t), ..., nm( yq,t))
T,

K̃ (t) = �
f (t)

0 (yi,y j ) f (t)
1 (yi,y j ) % f (t)

m � 1(yi,y j ) f (t)
m (yi,y j )

p(t)
0 (yi,y j ) 0 % 0 0

� p(t)
1 (yi,y j ) � �

�
...

0 0 % p(t)
m � 1(yi,y j ) 0

�,

(2.7)
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and D = diag(w). With K̃ (t) and D defined in this way, it is

straightforward to iterate the stochastic integral projection

model numerically by matrix multiplication,

n(t � 1) = K̃ (t)DK̃ (t�1)D ... K̃ (0)Dn(0), (2.8)

where n(0) is the initial age–size vector. In all calculations, 50

evenly spaced quadrature mesh points were used. To test the

accuracy of this approximation we compared the outputs of

models with 50 and 200 mesh points; in all cases, there was

excellent agreement.

(b) Stochastic integral projection model for

Carlina vulgaris

To apply the model we must specify how the size and age

dependences of the component functions change with time.

Environments are assumed to be independent and identically

distributed. Each year type, �, is characterized by the number

of recruits in the following year, R� � 1, and a pair of functions

describing survival and growth, s�(x) and g�(x,y). These have

been estimated directly from the data, giving rise to 16 function

pairs for Carlina. For each iteration of the model, a pair of func-

tions and the corresponding number of recruits are drawn at

random from the 16 possible sets with equal probability. We

write the fecundity function in year t as

f (t)
a (x,y) = pe(t)s�(x) pf,a(x)fn(x)fd(x,y), (2.9)

where pe(t) is the probability of seedling establishment, s�(x) is

the probability of survival for an individual of size x, pf,a(x) is

the probability that an individual of size x and age a flowers,

fn(x) is the number of seeds produced and fd(x,y) is the prob-

ability distribution of offspring size, y , for an individual of size

x. The survival–growth function in year t is given by

p(t)
a (x,y) = s�(x)[1 � pf,a(x)]g�(x,y), (2.10)

where g�(x,y) is the probability of an individual of size x growing

to size y . The probability of flowering, pf,a(x), enters the sur-

vival–growth function, as reproduction is fatal in monocarpic

species.

(c) Population biology of C. vulgaris

Carlina vulgaris, a monocarpic thistle of base-rich soils (mainly

on limestone or calcareous sand), is found as a native over a

wide area in Western, Central and Eastern Europe, and has been

introduced to North America and New Zealand. Under very

favourable growing conditions, Carlina individuals can flower in

their second year (Klinkhamer et al. 1991, 1996; Rees et al.

2000) but, more commonly, reproduction is delayed by at least

one more year. Previous studies in Holland (Klinkhamer et al.

1991, 1996) have shown that the probability of flowering is

related to plant size and not to age; however, in the UK the

probability of flowering is related to both plant size and age

(Rose et al. 2002). Flowering occurs between June and August,

and the seeds are retained in the flower heads until they are

dispersed during dry sunny days in late autumn, winter or spring

(P. J. Grubb, unpublished data). Seeds germinate from April to

June, and there is little evidence of a persistent seed bank

(Eriksson & Eriksson 1997; de Jong et al. 2000).

A detailed description of the study site and methods of analy-

sis is given in Rose et al. (2002). Here, we briefly describe the

main results that are relevant to this article. The study spanned

16 years and, during this time, the fates of over 1400 individuals

were followed. The length of the longest leaf was used as a

Proc. R. Soc. Lond. B (2004)

measure of plant size and, in all analyses, this was transformed

using natural logarithms. Growth was strongly size dependent

and well described by a simple linear model

y = ag � �� � bgx � 	, (2.11)

where �� is the deviation from the mean intercept in year type

�, and 	 is a standard normal deviate with mean zero and stan-

dard deviation 
. Size this year was the most important predictor

of size next year (F1,492 = 919.80, p � 0.001), followed by year

effects (F15,492 = 13.74, p � 0.001). There was no significant

effect of age (F1,492 = 0.45, p = 0.501). Therefore, the growth

function g�(x,y) in a year of type � is given by

g�(x,y) =
1


�2�
exp��

(y � (ag � �� � bgx))2

2
 2 �, (2.12)

which is the normal probability density function with mean

given by equation (2.11) and variance 
2.

Generalized linear models of the probabilities of mortality and

flowering were constructed assuming binomial errors and a

logit-link function. The probability of death was influenced by

plant size (
2
1 = 18.6, p � 0.001) but not by age (
2

1 = 2.31,

p � 0.13). There was significant yearly variation in mortality (


2
1 = 211.27, p � 0.001) but no evidence for year–size interac-

tions. Therefore, the survival function s�(x) in a year of type �

is described by

s�(x) =
exp(m0 � �� � ms x)

1 � exp(m0 � �� � ms x)
, (2.13)

where �� is the deviation from the mean intercept of the linear

predictor in a year of type �. Plant size was the most important

predictor of flowering (
2
1 = 139.86, p � 0.0001), with larger

plants being more likely to flower than smaller ones. There was

an additional effect of age (
2
1 = 19.37, p � 0.001) such that

older plants were more likely to flower. The resultant flowering

function pf,a(x) is given by

pf,a(x) =
exp(�0 � �sx � �aa)

1 � exp(�0 � �sx � �aa)
, (2.14)

where �0 is the intercept, �s the size-dependent slope and �a the

age-dependent slope of the flowering function.

There was no relationship between this year’s seed production

and the number of recruits in the following year, suggesting that

the probability of recruitment was density dependent (Rose et

al. 2002). This decoupling of recruitment from seed production

is probably the result of establishment being limited by the num-

ber of available microsites: more seedlings recruited when the

turf was either short or opened up locally by trampling cattle

(P. J. Grubb, personal observation). Thus, the probability of

establishment at time t is given by

pe(t) =
R� � 1

�m
a = 0

�
�

�
�

fa,�(x,y)na(x,t)dxdy

, (2.15)

where R� � 1 is the number of recruits into the population follow-

ing a year of type �. Data were not available on the sizes of

recruits derived from plants of different sizes, but evidence from

other systems suggests a low maternal effect on recruit size

(Weiner et al. 1997; Sletvold 2002), and so the distribution of

offspring sizes was assumed to be independent of parental size.

Parameter values are given in Rose et al. (2002).
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(d) Invasibility analysis and the ESS flowering

strategy

In a variable environment, fitness is determined by the

invasion exponent (the dominant Lyapunov exponent), �,

defined by

� = lim
t →�

t�1E[ln(Nt)], (2.16)

where Nt is the total population size at time t (Tuljapurkar

1990). The number � is equal to the stochastic growth rate of

an invading mutant population in the environment set by the

resident population, i.e. � = log�s: if � is negative the invader

will become extinct. In Appendix A, we prove the existence of

a unique stochastic growth rate that is independent of the initial

population vector for the stochastic integral projection model

(equation (2.3)). To estimate � we assume that the invader is

rare and so its density has no effect on the population growth

rate. We then generate a time-series (5000 years) for the resident

population consisting of the year type (�1, �2, ..., �5000), and the

probability of establishment ( pR
e (1), pR

e (2), ..., pR
e (5000)). This

defines the environment in which we estimate �. We calculate

� by iterating the model for the invader, using the resident time-

series for � and replacing pe(t) in equation (2.9) by pR
e (t). The

maximum-likelihood estimator of the invader growth rate, �, is

then given by

�̂ =
ln(Nt) � ln(N1)

t � 1
, (2.17)

where Nt is the total population size at time t, that is

Nt = �m
a = 0

�
�

na(x,t)dx. (2.18)

We can use equation (2.17) to generate a fitness landscape

describing the growth rates of mutant strategies invading a given

resident population. Landscapes were generated by estimating

�s (= e�) on a fixed grid of values of the flowering parameters.

To calculate the ESS we need to find a strategy that cannot

be invaded by rare mutants. It can be shown that, when density

dependence acts at the recruitment stage and there is no tem-

poral variation in the environment, the ESS flowering strategy

maximizes the net reproductive rate, R0 (Mylius & Diekmann

1995). There is no theoretical justification for the use of such

an optimization approach in density-dependent stochastic

environments, and instead an iterative invasion process is

required. We start the invasion process using the estimated

flowering parameters (�0, �s and �a) to generate a resident time-

series, and then maximize the invasion exponent (�max) using a

quasi-Newton algorithm, giving a new vector of flowering para-

meters (�max). These parameters were then used to generate a

new resident time-series and a second search was performed to

determine the new �max. This process was repeated until suc-

cessive values of �max converged on 0 to a specified tolerance

(0.001). The last �max was taken to be the putative ESS. To

improve the precision of the estimate, a random-walk algorithm

was used to find 250 strategies with fitness equal to the putative

ESS (i.e. � = 0). This is necessary because when estimating �

to a finite level of precision a range of parameter values around

the ESS have equal fitness. For each parameter of the flowering

function, the mean of the resultant set of equal-fitness values

was used as the final ESS estimate.

Proc. R. Soc. Lond. B (2004)

3. RESULTS

(a) Descriptive properties of the model

The descriptive properties of the parameterized stochas-

tic model can be assessed by calculating the stable size–

age distribution numerically and comparing this with the

observed data. This shows that there is good agreement

between the model and the observed size–age distribution

(figure 1). We also calculated various measures of popu-

lation size and age structure, using the methods outlined

in Rees & Rose (2002) and Childs et al. (2003), and in

all cases the model predictions were in excellent agree-

ment with the field data (table 1). As density dependence

is explicitly modelled, we can calculate the equilibrium

population size, and again there is excellent agreement

between the model and the data (table 1).

(b) Fluctuating selection

Recently developed methods for analysing constant-

environment integral projection models can be used to

quantify the fluctuating selection pressure acting on the

observed flowering strategy (Rees & Rose 2002; Childs et

al. 2003). We take each year type in turn and assume that

it describes a constant environment inhabited by a popu-

lation employing the estimated flowering strategy. Two

metrics summarizing the selection acting on the flowering

strategy were then calculated for all 16 years: the ESS

mean flowering size and the selection pressure on the

intercept of the flowering function (�0) (figure 2). The

calculations were carried out assuming that the size-

dependent slope of the flowering function, �s, was fixed

at the estimated value. We use this constraint to prevent

the ESS strategy being a step function, which occurs as

�s → � and �a = 0. The biological motivation for using

this constraint is discussed in § 3c.

The ESS flowering strategy for each year type was

determined by maximizing R0. The year-specific ESS

flowering strategies were highly variable and fall into two

broad categories, annual (mean flowering size of less than

30 mm) and delayed reproduction (mean flowering size of

greater than 45 mm) types (figure 2a). The mean flower-

ing size is approximately proportional to ��0 and so sensi-

tivities (∂�/∂�0) provide an estimate of the selection acting

on the average size at flowering. In half the years, there is

relatively weak selection for larger flowering sizes

(∂�/∂�0 � 0), whereas in the remaining years there is

much stronger selection for smaller flowering sizes

(∂�/∂�0 ≫ 0).

(c) Evolution of the flowering strategy

We initially calculated the ESS flowering strategy by

allowing all three parameters of the flowering function to

vary. Under these conditions, we find that the ESS flower-

ing strategy tends to a step function with a very small age

component (table 2). The predicted average size at flower-

ing in this case is greater than the observed value, while

the variance in flowering sizes is much lower than in the

observed data (figure 3). We recalculated the ESS flower-

ing strategy assuming that the size-dependent slope of the

flowering function, �s, is fixed at the estimated value, to

prevent the flowering surface becoming a step function.

There are several reasons why it might be impossible for

plants to achieve a step function: (i) there is variable
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Figure 1. Observed (solid bars) and predicted (lines) stable size–age distribution for ages 0–5, in (a)–( f ), respectively. The bar

width in each histogram was chosen using a kernel density estimation routine to make the plots maximally informative.

Table 1. Field data and model predictions.

(Values in brackets are 95% confidence intervals.)

data model

average number of plants 74.4 (47.9, 101) 78.2

average size (mm) 32.8 (31.5, 34.1) 32.9

average age (years) 0.84–0.94 0.96

average size at flowering (mm) 52.0 (48.4, 55.6) 55.1

average age at flowering (years) 3.1 (2.7, 3.4) 2.94

growth between when the decision to flower is made and

when plant size is measured; (ii) plant size may not be

perfectly correlated with the threshold condition for

flowering; and (iii) there may be genetic variation in the

threshold condition for flowering. When �s is constrained,

both the mean and variance of the predicted flowering-

size distribution are in excellent agreement with the

observed data (table 2; figure 3). There is effectively no

age component to the ESS flowering function, which is

intuitively sensible given that the vital rates are inde-

pendent of age.

(d) Fitness landscapes

We generated a fitness landscape in the fully stochastic

environment assuming that the resident used the esti-

mated flowering strategy (figure 4). Fitness was calculated

for a wide range of �0 and �a, assuming �s was fixed. The

ESS strategy lies just outside the 95% confidence envelope

for the estimated parameters. Recall that as �0 gets smaller

(more negative) so the size at flowering increases. Moving

across the landscape from left to right we see a steep

increase in the performance of the flowering strategy,

which reaches a maximum then declines to a plateau

where all strategies have equal fitness. Clearly, flowering

at sizes much larger than the ESS results in a dramatic

loss of fitness. This is a consequence of high mortality:

average-sized plants (32.8 mm) suffer between 15% and

95% mortality, depending on the year type. The plateau

in the fitness landscape, corresponding to large values of

�0, occurs as all plants adopt the annual flowering strat-

egy, and so have equal performance. Moving vertically

across the landscape, we see much smaller changes in

Proc. R. Soc. Lond. B (2004)

performance. This is a direct result of the vital rates being

determined by plant size rather than by age.

The pattern of fluctuating selection (figure 2b) can be

understood by examining the fitness landscape (figure 4).

We assume that the general topography of the landscape

is maintained in different years, though the location of the

peak (i.e. the approximate ESS) may vary. In some years,

the estimated strategy lies to the right of the peak on the

plateau of early-flowering strategies, where there is only

weak selection for flowering at larger sizes. In other years,

the estimated strategy lies to the left of the ESS on the

steep slope of strategies that delay flowering too long. In

these instances, there is much stronger selection for

flowering at smaller sizes.

To understand how different sources of variation influ-

ence the topography of the fitness surface, we calculated

fitness landscapes in constant and stochastic environ-

ments. The geometry of a landscape depends in part upon

the resident parameter set and not just on the underlying

model. To illustrate this, we generated landscapes for five

different resident populations in the stochastic environ-

ment, varying the parameter �0 while fixing �s and �a at

their estimated values (figure 5a). As the resident popu-

lation moves further away from the ESS the shape and

height of the fitness surface are altered. To control for

this ‘resident location effect’, we used the environment-

specific ESS parameters as the resident parameters when

generating landscapes with different sources of temporal

variation. Fitness landscapes were generated under five

different regimes: a constant environment (using the aver-

age number of recruits and the average intercepts in the

survival and growth models; justification for the use of this

model is provided in Rees et al. (2004)), variable recruit-

ment, variable survival, variable growth and the fully

stochastic case. The ESS flowering strategy was estimated

by varying only the parameter �0. Though the landscapes

have the same general topography, the surface corre-

sponding to the fully stochastic model has the sharpest

peak (figure 5b). The largest differences between the land-

scapes occur at small flowering sizes (�5 � �0 � 0). In

this region, the net effect of stochastic growth is negligible

relative to the constant-environment case. The relative

fitness costs associated with early flowering in a variable-
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Table 2. Evolutionarily stable flowering strategy in terms of the parameters of the flowering function and the average size and

age at flowering, assuming that the slope of the flowering function, �s, is constrained at its estimated value and no constraints.

(For reference, the estimated values are also given, values in brackets are 95% confidence intervals.)

parameter mean

size at flowering age at flowering

�0 �s �a (mm) (years)

unconstrained ESS �507 131 �3.50 65.0 2.7

constrained ESS �10.9 — 0.08 51.2 2.5

estimated value �12.1 (�9.84, �14.26) 2.64 (2.06, 3.22) 0.32 (0.18, 0.45) 52.0 (48.4, 55.6) 2.8 (2.7, 3.4)
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Figure 2. Demonstration of fluctuating selection in Carlina

using (a) ESS flowering size for each year in a constant

environment, the dashed line is the observed mean, and

(b) selection pressure acting on the intercept of the flowering

function, �0, in each year.

recruitment environment are much higher, lending sup-

port to the idea of a bet-hedging strategy operating in the

system. By contrast, early flowering is less costly when sur-

vival is variable, because early reproduction reduces the

impact of occasional high-mortality years. For large

flowering sizes (�0 � �10) the effects of stochastic

variation are largely determined by variable survival, as

indicated by the close approximation of the variable-

survival-only model to the fully stochastic case.

(e) Elasticity and sensitivity analysis

The standard approach for understanding how the vari-

ous parameters influence fitness is elasticities analysis.

Elasticities can be used to measure the proportional

Proc. R. Soc. Lond. B (2004)

change in �s (not the invasion exponent = log�s) caused by

proportional changes in f (t)
a (x,y) and p(t)

a (x,y). Tuljapur-

kar (1990) presented a numerical method for estimating

the elasticity of �s that is suitable for matrix models. We

use this approach to generate an approximation for the

elasticity of �s to the kernel component functions

kmn( yi,y j), such that

∂log�s

∂logkmn( yi, y j)
= lim

T →�

1

T
�T � 1

t = 0

(v(t � 1)wT(t))�K̃ (t)D

Rtv(t � 1)w(t � 1)
, (3.1)

where the m and n subscripts refer to the kernel compo-

nent function in the mth row and nth column of K̃ (t), and

� denotes the Hadamard operator. The terms w(t) and

v(t) satisfy

w(t � 1) =
K̃ (t)Dw(t)

Rt

and vT(t � 1) =
vT(t)K̃ (t � 1)D

Qt

,

(3.2)

where Rt = �K̃ (t)w(t)D� and Qt = �vT(t)K̃ (t�1)D� (see

Caswell 2001, p. 402). Justification for the use of this

approach is given in Appendix A. As elasticities sum to

unity, this analysis allows us to partition the contributions

of f (t)
a (x,y) and p(t)

a (x,y) to �s of different age classes. We

also calculated elasticities for a constant-environment

model (using the average number of recruits and the aver-

age intercepts in the survival and growth models). The

elasticity surfaces corresponding to the constant and

stochastic environments are almost identical (figure 6).

They show that the survival–growth function makes a

larger contribution to �s than does the fecundity function

(constant environment, 0.70 and 0.30, respectively;

stochastic environment, 0.67 and 0.33, respectively) and

that the largest contributions to �s come from changes in

the survival–growth function, p(t)
a (x,y), of young plants.

4. DISCUSSION

We have shown how the integral projection model may

be used to explore the demography and evolution of size-

and age-structured populations in a density-dependent

stochastic environment. The resultant model combines

the flexibility of the individual-based approach with the

computational efficiency and power of traditional matrix

methods. However, unlike parameterization of age- and

size-structured matrix models (Law 1983), parameteriz-

ation of the integral projection model is straightforward

and requires no new techniques beyond standard

regression analyses (Venables & Ripley 1997). Using
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and predictions from the various models. The bold line is the

fitted model, the dotted line is from the unconstrained ESS

model and the solid thin line is from the constrained ESS.
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Figure 4. The fitness landscape for Carlina, calculated

assuming that the resident population uses the estimated

flowering strategy in a fully stochastic environment. The

filled point is the estimated flowering strategy, and the bold

ellipse is the 95% confidence contour, calculated using the

standard quadratic approximation to the likelihood—

assuming that the likelihood is 
2-distributed with three

degrees of freedom. The open point is the ESS prediction

assuming �s is fixed.

simple field data, we were able to make very accurate pre-

dictions of the distribution of flowering sizes in Carlina.

Invasibility analysis reveals that the observed flowering

strategy is close to the ESS and that temporal variation in

recruitment, growth and survival are all important influ-

ences on the evolutionarily stable flowering size (figure 5).

These results reinforce the conclusions of Rees et al.

(1999) and Rose et al. (2002) on the need to include tem-

poral variation in life-history studies.

The parameterized model provides an accurate descrip-

tion of the number of individuals and the distribution of

Proc. R. Soc. Lond. B (2004)

–25 –20 –15 –10 –5 0

0

0.5

1.0

1.5

2.0

2.5

intercept of flowering function   0 

fi
tn

es
s 

  
s

–25 –20 –15 –10 –5 0

0

0.2

0.4

0.6

0.8

1.0

intercept of flowering function   0 

λ

β

β

(a)

(b)

fi
tn

es
s 

  
s

λ

Figure 5. Fitness landscapes as a function of �0, the

intercept of the flowering function: (a) stochastic environ-

ment with five different residents, (b) different variable

environments with the environment-specific ESS as the

resident strategy (thick line, fully stochastic environment;

thin line, constant environment; dotted line, variable growth

only; dashed line, variable survival only; dotted–dashed line,

variable recruitment only).

sizes within each age class, the distribution of flowering

sizes, average age at reproduction and average population

size. Clearly, an adequate model must at least describe the

data well if it is to be used to draw further conclusions.

However, a parameterized model of Carlina ignoring

stochastic variation failed to predict the mean and variance

of the ESS flowering distribution, while still providing an

accurate description of the population structure (Childs et

al. 2003). By contrast, the stochastic model presented

here predicts an evolutionarily stable flowering size

(51.2 mm) that is very close to the estimated mean size

at flowering (52.0 mm), provided that the variance in the

threshold size distribution is constrained. Interestingly, in

the constant-environment case (Childs et al. 2003), the

parameters of the constrained ESS are not significantly

different from the estimated parameters of the flowering

function, yet the fitness difference between the estimated

and evolutionarily stable flowering functions was ca. 10%.

Conversely, in the stochastic model the ESS parameters

are significantly different from the estimated parameters,

though the fitness difference is only ca. 2%. Taken

together, these observations indicate that an adequate

description of the life history of Carlina needs to include

temporal variation (Rose et al. 2002), and highlights the
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Figure 6. Elasticity analysis of the kernel component functions in constant (grey bars, dashed lines) and stochastic (black bars,
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plots for (c) fa(x,y ) and (d ) pa(x,y ) for ages 0 and 6, showing the 0.000 003 contour for each age.

need to be careful when comparing the predictions of

evolutionary models with data, as different metrics may

produce different results. It is also important to dis-

tinguish between biological significance (measured in

terms of fitness differences) and statistical significance

when making such comparisons.

The fitness landscapes (figure 5b) have well-defined

maxima in contrast to those of several other studies

(Klinkhamer & de Jong 1983; Tuljapurkar 1990), and the

sharpness of the peak increases as different forms of stoch-

asticity are included in the model (figure 5). This discrep-

ancy between our study and earlier studies is probably a

result of exploring models with several forms of stochas-

ticity. The importance of different sources of stochasticity

depends on flowering size; in large flowering plants, fitness

is primarily determined by fluctuations in survival,

whereas in small flowering ones fluctuations in recruit-

ment are critical. Thus, the generalization of Caswell

(2001), that in stochastic environments fitness optima are

often flat, may be a consequence of including only a single

form of stochasticity in earlier models.

Selection and common garden experiments have shown

that natural populations harbour extensive genetic

variation for flowering size (reviewed in Metcalf et al.

2003). The mechanisms responsible for the maintenance

Proc. R. Soc. Lond. B (2004)

of this variation are not known but theoretical work has

shown that an evolutionarily stable population has a posi-

tive genetic variance maintained by selection providing

that the product of the variance of fluctuations, the

amount of generation overlap and the selection intensity

is sufficiently high (Ellner & Hairston 1994). This mech-

anism could operate in Carlina as there is fluctuating

selection (figure 2b) and overlapping generations.

Elasticity analysis was used to partition contributions to

�s from different kernel component functions, age classes

and sizes. In this system the survival–growth functions

make a greater contribution to �s than the fecundity func-

tions, because reductions in growth and survival of a parti-

cular age class reduce opportunities for reproduction in

subsequent years. Younger plants contribute most to �s

because they represent a larger proportion of the stable

age distribution. However, this underlying trend is tem-

pered by the fact that younger, and hence smaller, plants

contribute relatively few recruits to the next generation

(figure 6a,b). Elasticity contour plots for the fecundity

functions demonstrate that contributions to �s through

recruitment are most important for large individuals,

while �s is influenced by the survival of a wide range of

size types (figure 6c,d). Individuals are, on average, larger

as they grow older, and this is reflected in a shift in the
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high-density regions of the elasticity surfaces toward larger

sizes for older age classes. As found in several other stud-

ies, the constant-environment elasticities provide an excel-

lent approximation to the stochastic-environment ones

(Benton & Grant 1996; Caswell 2001).

By combining techniques for the modelling of size- and

age-dependent demography in a stochastic environment

with ideas from evolutionary demography we have been

able to show that the observed flowering strategy in Car-

lina is close to the ESS and that accurate prediction of the

distribution of flowering sizes is possible. What is not clear

is how different forms of stochasticity influence the ESS.

There are two distinct ways in which temporal variation

could be important. First, when the environment varies

through time, average demographic rates differ from

demographic rates in the average environment owing to

nonlinear averaging. Second, the ESS will vary from year

to year, owing to non-equilibrium dynamics. Methods for

quantifying the relative importance of different forms of

stochasticity and how nonlinear averaging and non-

equilibrium dynamics contribute to this are explored in

Rees et al. (2004) where techniques for decomposing the

effects of stochastic selection are developed.

APPENDIX A: STOCHASTIC GROWTH RATE AND

SENSITIVITY ANALYSIS

We supply some technical details for the C. vulgaris

model; more general models will be considered elsewhere.

As in the corresponding deterministic model (appendix to

Childs et al. 2003), some special model properties allow

derivations based on matrix-model theory:

(i) all living individuals have some probability of repro-

ducing now or later;

(ii) there is a maximum possible age, m; and

(iii) the size distribution of new offspring (age = 0) is the

same for all parents in all years:

fd(x,y) = �0(y), (A 1)

with the environment states �(t) determining the sur-

vival and growth functions and the total number of

recruits each year.

As a result of (ii) and (iii), after an initial transient of, at

most, m years the state of living individuals is a function

only of the environment states ‘now’ and over the past m

years, �(t) = (�(t), �(t � 1), %, �(t � m)). Consider indi-

viduals now of some age a.

(i) One component of �(t) determines the number of

recruits Rt�a in their year of birth, and thus deter-

mines the initial cohort as n0(x,t � a) = Rt�a�0(x).

(ii) Other components of �(t) then determine the sur-

vival and growth functions that act on this cohort in

each subsequent year up to the present.

Thus, the entire resident population state at time t is a det-

erministic function of the random environment process

�(t).

By assumption, the environment states �(t) are

independent and identically distributed, hence �(t) is a

stationary ergodic first-order Markov chain. The resident-

population process is therefore stationary and ergodic

(with stochastic growth 0, neither increasing nor

decreasing). Its numerical properties can be determined

either by simulation and averaging, or by numerically

Proc. R. Soc. Lond. B (2004)

implementing the population-dynamic iterations (using

the �(t)-dependent kernel components) that generate the

current population state as a function of �(t).

An invader’s population dynamics are density inde-

pendent with equations (2.9) and (2.15) giving the fec-

undity (survival and growth are density independent for

both resident and invader). All terms in these equations

are functions of �(t), either directly or via the dependence

of the resident-population state on �(t). The invader is

therefore governed by a stochastic density-independent

integral projection model in which all components depend

on �(t). However, this can be reduced to a stochastic

matrix model for the total number of individuals in each

age class, implying the existence of a stochastic growth

rate, as follows.

As with the resident, after a possible transient of length

m all individuals of ages j � 0 are descended from a cohort

with size distribution �0 and therefore have size distri-

butions proportional to � j(y ,t) where

� j �1( y ,t � 1) = �
�

� j (x,t) p(t)
j (x,y)dx,

� j �1 = � j �1	�
�

� j �1dy . (A 2)

The fraction surviving to age j � 1 is therefore

P j(t) = �
�

�
�

� j(x,t) p(t)
j (x,y)dxdy . (A 3)

Note that, since �0 is independent of time, equation

(A 2) constructs � j(y ,t) as a function of �(t), hence

Pj(t) is a function of �(t). Similarly, the per capita fec-

undity of age-j individuals is

F j(t) = �
�

�
�

� j(x,t) f (t)
j (x,y)dxdy . (A 4)

As noted above, f (t)
j is determined by �(t), so F j(t) is also

determined by �(t). The population count vector

N(t) = [N0(t), N1(t), %, Nm(t)], consisting of the total

numbers in each age class, therefore satisfies a stochastic

Leslie matrix L(t) having the same form as the K̃ (t)D

matrix (equations (2.6) and (2.7)),

N(t � 1) = �
F0(t) F1(t) % Fm � 1(t) Fm(t)

P0(t) 0 % 0 0

� P1(t) � �

�
...

0 0 % Pm � 1(t) 0
�N(t).

(A 5)

The random matrix sequence L(t) is stationary and erg-

odic, and its values lie in an ergodic set (there are

16m � 1 possible values of �(t) each generating a possible

value of L(t), and all have the same incidence matrix which

is power-positive). The fact that the set of values of L(t) is

finite also implies that Emax{0,log�L(t)�} is finite, hence

standard results for stochastic matrix models (see

Tuljapurkar (1990), § 4.2.1) imply the existence of a

unique stochastic growth rate, which is independent of the

initial population vector.
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The elasticity analysis (equations (3.1) and (3.2))

depends on two additional properties (see Tuljapurkar

(1990), § 11.2). First, the process �(t) generating the vital

rates can be run backwards in time by running �(t) back-

wards in time, which is possible since values of �(t) are gen-

erated independently over time. Second, the reduction to

a matrix model above implies that the growth rate is a

smooth function under perturbations of the matrix (and

hence under perturbations of the integral model kernel

components that generate the matrix). Equations (3.1) and

(3.2) therefore give the elasticity of the approximate stochas-

tic growth rate generated by the quadrature approximation

to the stochastic integral model (i.e. the K̃ (t)D matrix). In

other words, by formally reducing the model to equation

(A 5) we have shown that the stochastic growth rate exists

and has well-defined elasticities. The calculations in § 3e

involving the K̃ (t)D matrix are a straightforward way to

obtain approximate numerical values of these quantities (to

any desired accuracy, by increasing the number of mesh

points) using standard matrix operations and software.

REFERENCES

Benton, T. G. & Grant, A. 1996 How to keep fit in the real-

world: elasticity analyses and selection pressures on life-

histories in a variable environment. Am. Nat. 147, 115–139.

Caswell, H. 2001 Matrix population models. Construction, analy-

sis and interpretation. Sunderland, MA: Sinauer Associates.

Charlesworth, B. 1994 Evolution in age-structured populations.

Cambridge Studies in Mathematical Biology. Cambridge

University Press.

Childs, D. Z., Rees, M., Rose, K. E., Grubb, P. J. & Ellner,

S. P. 2003 Evolution of complex flowering strategies: an age-

and size-structured integral projection model approach.

Proc. R. Soc. Lond. B 270, 1829–1838. (DOI 10.1098/

rspb.2003.2399.)

Cole, L. C. 1954 The population consequences of life history

phenomena. Q. Rev. Biol. 29, 103–137.

de Jong, T. J., Klinkhamer, P. G. L., Geritz, S. A. H. & van

der Meijden, E. 1989 Why biennials delay flowering—an

optimization model and field data on Cirsium vulgare and

Cynoglossum officinale. Acta Bot. Neerland. 38, 41–55.

de Jong, T. J., Klinkhamer, P. G. L. & de Heiden, J. L. H.

2000 The evolution of generation time in metapopulations

of monocarpic perennial plants: some theoretical consider-

ations and the example of the rare thistle Carlina vulgaris.

Evol. Ecol. 14, 213–231.

Easterling, M. R. 1998 The integral projection model: theory,

analysis and application. PhD thesis, North Carolina State

University, Raleigh, NC, USA.

Easterling, M. R., Ellner, S. P. & Dixon, P. M. 2000 Size-

specific sensitivity: applying a new structured population

model. Ecology 81, 694–708.

Ellner, S. & Hairston, N. G. 1994 Role of overlapping gener-

ations in maintaining genetic variation in a fluctuating

environment. Am. Nat. 143, 403–417.

Eriksson, A. & Eriksson, O. 1997 Seedling recruitment in

semi-natural pastures: the effects of disturbance, seed size,

phenology and seed bank. Nordic J. Bot. 17, 469–482.

Kachi, N. & Hirose, T. 1985 Population dynamics of Oeno-

thera glazioviana in a sand-dune system with special refer-

ence to the adaptive significance of size-dependent

reproduction. J. Ecol. 73, 887–901.

Klinkhamer, P. G. L. & de Jong, T. J. 1983 Is it profitable for

biennials to live longer than two years? Ecol. Model. 20,

223–232.

Proc. R. Soc. Lond. B (2004)

Klinkhamer, P. G. L., de Jong, T. J. & Meelis, E. 1987 Delay

of flowering in the biennial Cirsium vulgare: size effects and

devernalization. Oikos 49, 303–308.

Klinkhamer, P. G. L., de Jong, T. J. & Meelis, E. 1991 The

control of flowering in the monocarpic perennial Carlina vul-

garis. Oikos 61, 88–95.

Klinkhamer, P. G. L., de Jong, T. J. & de Heiden, J. L. H.

1996 An eight-year study of population dynamics and life-

history variation of the ‘biennial’ Carlina vulgaris. Oikos 75,

259–268.

Law, R. 1983 A model for the dynamics of a plant population

containing individuals classified by age and size. Ecology 64,

224–230.

Metcalf, J. C., Rose, K. E. & Rees, M. 2003 Evolutionary

demography of monocarpic perrenials. Trends Ecol. Evol. 18,

471–480.

Metz, J. A. J., Nisbet, R. M. & Geritz, S. A. H. 1992 How

should we define ‘fitness’ for general ecological scenarios?

Trends Ecol. Evol. 7, 198–202.

Mylius, S. D. & Diekmann, O. 1995 On evolutionarily stable

life histories, optimization and the need to be specific about

density dependence. Oikos 74, 218–224.

Rees, H., Childs, D. Z., Rose, K. E. & Grubb, P. J. 2004 Evol-

ution of size-dependent flowering in a variable environment:

partitioning the effects of fluctuating selection. Proc. R. Soc.

Lond. B 271. (In the press.) (DOI 10.1098/rspb.2003.2596.)

Rees, M. & Rose, K. E. 2002 Evolution of flowering strategies

in Oenothera glazioviana: an integral projection model

approach. Proc. R. Soc. Lond. B 269, 1509–1515. (DOI

10.1098/rspb.2002.2037.)

Rees, M., Sheppard, A., Briese, D. & Mangel, M. 1999 Evol-

ution of size-dependent flowering in Onopordum illyricum: a

quantitative assessment of the role of stochastic selection

pressures. Am. Nat. 154, 628–651.

Rees, M., Mangel, M., Turnbull, L. A., Sheppard, A. & Briese,

D. 2000 The effects of heterogeneity on dispersal and colon-

isation in plants. In Ecological consequences of environmental

heterogeneity (ed. M. J. Hutchings, E. A. John & A. J. A.

Stewart), pp. 237–265. Oxford: Blackwell Scientific.

Rees, H., Childs, D. Z., Rose, K. E. & Grubb, P. J. 2004 Evol-

ution of size-dependent flowering in a variable environment:

partitioning the effects of fluctuating selection. Proc. R. Soc.

Lond. B 271. (In the press.) (DOI 10.1098/rspb.2003. 2596.)

Roff, D. A. 1992 The evolution of life histories. Theory and analy-

sis. London: Chapman & Hall.

Rose, K. E., Rees, M. & Grubb, P. J. 2002 Evolution in the

real world: stochastic variation and the determinants of fit-

ness in Carlina vulgaris. Evolution 56, 1416–1430.

Sletvold, N. 2002 Effects of plant size on reproductive output

and offspring performance in the facultative biennial Digitalis

purpurea. J. Ecol. 90, 958–966.

Stearns, S. C. 1992 The evolution of life histories. Oxford Univer-

sity Press.

Tuljapurkar, S. 1990 Population dynamics in variable environ-

ments. Lecture Notes in Biomathematics. London: Springer.

Venables, W. N. & Ripley, B. D. 1997 Modern applied statistics

with S-PLUS. New York: Springer.

Weiner, J., Martinez, S., Muller-Scharer, H., Stoll, P. &

Schmid, B. 1997 How important are environmental

maternal effects in plants? A study with Centaurea maculosa.

J. Ecol. 85, 133–142.

Wesselingh, R. A., Klinkhamer, P. G. L., de Jong, T. J. &

Boorman, L. A. 1997 Threshold size for flowering in differ-

ent habitats: effects of size-dependent growth and survival.

Ecology 78, 2118–2132.

As this paper exceeds the maximum length normally permitted, the

authors have agreed to contribute to production costs.


	Evolution of size-dependent flowering in a variable environment: construction and analysis of a stochastic integral projection model
	INTRODUCTION
	METHODS
	Stochastic integral projection models
	Stochastic integral projection model for Carlina vulgaris
	Population biology of C. vulgaris
	Invasibility analysis and the ESS flowering strategy

	RESULTS
	Descriptive properties of the model
	Fluctuating selection
	Evolution of the flowering strategy
	Fitness landscapes
	Elasticity and sensitivity analysis

	DISCUSSION

	REFERENCES

