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Decoherence and Quantum Walks: anomalous diffusion and ballistic tails

N.V. Prokof’ev1, 2 and P.C.E. Stamp3, 4
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The common perception is that strong coupling to the environment will always render the evo-
lution of the system density matrix quasi-classical (in fact, diffusive) in the long time limit. We
present here a counter-example, in which a particle makes quantum transitions between the sites
of a d-dimensional hypercubic lattice whilst strongly coupled to a bath of two-level systems which
’record’ the transitions. The long-time evolution of an initial wave packet is found to be most
unusual: the mean square displacement n2 of the particle density matrix shows long-range ballitic
behaviour, with 〈n2〉 ∼ t2, but simultaneously a kind of weakly-localised behaviour near the origin.
This result may have important implications for the design of quantum computing algorithms, since
it describes a class of quantum walks.

PACS numbers: 05.40.Fb, 03.65.Yz, 03.67.-a

One can think of the trajectory of a quantum parti-
cle hopping between 2 nodes A and B on some lattice
or ’graph’, as a ’quantum walk’, in which the amplitude
to go from A to B is given by summing over all possi-
ble paths (or ’walks’) between them. Amusingly, such
walks can also describe the time evolution of quantum
algorithms, including the Grover search algorithm and
Shor’s algorithm. One can find explicit mappings be-
tween the Hamiltonian of a quantum computer built from
spin-1/2 ’qubits’ and gates, and that for a quantum par-
ticle moving on some graph[1, 2]. Each graph node repre-
sents a state in the system Hilbert space, and the system
then walks in ’information space’. This mapping is most
transparent for spatial search algorithms with the local
structure of the database. Amongst the graphs so far
studied are ’decision trees’[1, 3, 4] and hypercubes[5, 6];
quantum walks on other graphs, and their connection to
algorithms, were recently reviewed[2].

The quantum dynamics between two sites A and B on
a given graph is often much faster (sometimes exponen-
tially faster) than for a classical walk on the same graph
[4, 7, 8]. It has been argued that quantum walks may
generate new kinds of quantum algorithm, which have
proved very hard to find. Several recent papers have
also considered experimental implementations of quan-
tum walks for quantum information processing[9, 10];
some involve walks in real space, whereas others are
purely computational (eg., a walk in the Hilbert space
of a quantum register[10]). Many experiments over the
years, particularly in solid-state physics, have also been
implicitly testing features of quantum walks.

As always, the main problem confronting any quantum
algorithm is environmental decoherence - the gradual en-
tanglement of the system with the ’environment’ means
that phase interference effects are gradually lost, in mea-
surements performed on the system alone. It is generally
assumed that the system dynamics will then show classi-
cal diffusion at long times[11], at least if the environment
is at or near equilibrium[12]. This ’folk theorem’ is sup-

ported by results on many models[13] (except for certain
very unusual 1-dimensional systems[14]). Recent inves-
tigations of decoherence effects on quantum walks[15]-
[19] give similar results, although in one investigation
of random walks driven by coin-tosses[17], non-classical
behavior was found. In these recent investigations, the
decoherence mechanism was either (i) an external noise
source (ii) a coupling to a set of tossing ’coins’; or (iii) a
coupling of the coins to a heat bath. In solid-state and
atomic qubits systems, the heat bath is modelled either
by a set of oscillators (representing delocalised modes
like phonons, photons, or electrons), or by a set of ’2-
level systems’, or ’TLS’ (representing localised modes like
defects, topological disorder, or nuclear and paramag-
netic spins). Both are important in experiment; TLS are
particularly important for decoherence in magnetic[20],
superconducting[21], and conducting[22] qubit systems,
and tend to dominate at low temperature.

In this paper we consider a class of quantum walk mod-
els having a very unusual dynamics- not only is the long-
time behaviour not classically diffusive, but a part of the
single-particle reduced density matrix always continues
to show coherent dynamics. These models are very rele-
vant to solid-state quantum information processing sys-
tems, since they involve a TLS bath- we couple a quan-
tum particle moving on a graph to a bath described by
a set {σk} of TLS, written as spin-1/2 Pauli spins (with
k = 1, 2, ...N). We first describe the dynamics of these
models, and then their physical interpretation.

Quantum Walker: For definiteness we choose a d-
dimensional hypercubic graph for the walking particle
(our main conclusions do not depend on this assump-
tion), with the ’bare’ Hamiltonian

Ho = ∆o

∑

<ij>

(c†i cj + h.c.) (1)

Here c†i creates the particle on site i, and < ij > restricts
the dynamics to nearest neighbor hopping. The particle
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moves in a Bloch band with dispersion relation ǫo(k) =

2∆o

∑d
µ=1 cos(kµao) and bandwidth Wo = 4d∆o. Here

ao is the lattice constant, and k the d-dimensional mo-
mentum. Henceforth we measure all distances in units of
ao, and label lattice sites by a lattice vector n.

For this quantum walker, the solution of Schrödinger’s
equation is standard. Thus a particle initially localized
at the origin, with wave-function ψn(t = 0) = δn0 at
t = 0, evolves to ψn(t) = L−d

∑

k
ei[k·n−ǫo(k)]t at a later

time, where L is the linear system size. The probability
distribution P o

n0(t) = |ψn(t)|2 is then

P o
n0(t) =

d
∏

µ=1

J2
nµ

(z) ; z = 2∆ot , (2)

where Jn(z) is the n-th order Bessel function. The
continuum-space limit is recovered by considering a
broad Gaussian initial wave-packet, initially centred at

the origin, of form ψn(t = 0) ≈ (1/
√
πR)d/2 e−n2/2R2

with R ≫ 1. Then for later times

P o
n0(t) ≈

(

R2

π(R4 + z2)

)d/2

e−n2R2/(R4+z2) . (3)

As expected, a purely quantum-mechanical evolution
gives P o

00(t) ∝ 1/td and 〈n2〉 ∝ t2 at long times.

Environmental decoherence: Coupling the quan-
tum walker to an environment is supposed to change the
long-time evolution to classical diffusion, characterized

at long times by P
(cl)
00 (t) ∝ 1/td/2 and 〈n2

cl〉 ∝ t. We
certainly expect this for models in which the particle co-
ordinate is coupled to an Ohmic oscillator bath, but we
now examine the effect of a coupling between the particle
and a TLS bath. On its own, this bath has a Hamiltonian

HTLS =
∑

k hk · σk +
∑

kk′ V
αβ
kk′ σα

k σ
β
k′ , where the {hk}

are fields acting on each TLS, and the V αβ
kk′ describe in-

teractions between them. Typically the V αβ
kk′ are very

small, and lead only to a very slow dynamics of the TLS
bath, so we shall drop them[25]. Various couplings of the
bath to the walker are possible, but we are interested in
those which monitor transitions of the walker, ie., those
triggered when the particle hops between nodes. We can
then distinguish 2 important limiting cases:

(i) the TLS bath is acted on by only weak external
fields, which we then neglect. Now assume that each time
the quantum walker hops it can flip the k-th TLS σk with
amplitude αk. We can write the effective Hamiltonian as

H = ∆o

∑

<ij>

{

c†icj cos

(

∑

k

αkσ
x
k

)

+H.c.

}

, (4)

In what follows we will assume that the individual αk

are small but that the number N of TLS is so large that
κ =

∑

k α
2
k ≫ 1, i.e. hopping events are accomplished

by simultaneous transitions in a large number of TLS. In
other words, we look at the case of strong decoherence.

(ii) The TLS bath is polarised by strong external field
hk = h. Defining the unit vector {ẑ} along the axis of
this field, and the total polarisation M =

∑

k σ
z
k of the

TLS bath with respect to this axis, we see that in this
strong field limit, only bath transitions which conserveM
are allowed. In this case one has an effective Hamiltonian

HM = ∆o

∑

<ij>

{

c†i cj [P−M ei
∑

k
αkσx

k PM ] +H.c.
}

(5)

where PM projects the state of the TLS bath onto the
subspace with polarization M . We have dropped the
large Zeeman term

∑

k h·σk from this Hamiltonian, since
it is now just an M -dependent constant.

We now proceed with the solution for the probability
distribution Pn0(t). We shall look in detail at the first
model (4) above, and then comment on the second one.
The form of (4) is a simple generalisation of a Hamilto-
nian H = ∆o {τ̂x cos[

∑

k αkσ
x
k ] +H.c.}, which describes

one limiting case of the interaction of a single qubit τ

with a spin bath. The density matrix of this model is
given exactly as a phase average over the propagator of
the ’bare’ qubit [23, 24], and one can use precisely the
same technique to write the solution for (4). Thus, for
the initially localised state ψn(t = 0) = δn0, assuming
the strong decoherence limit described above, one finds
the solution at time t as

Pn0(t) =

∫ 2π

0

dϕ

2π

d
∏

µ=1

J2
nµ

(z cosϕ) , (6)

and similarly for the initially broad wave-packet one gets

Pn0(t) ≈
∫ 2π

0

dϕ

2π

Rd e−n2R2/(R4+z2 cos2 ϕ)

[

π(R4 + z2 cos2 ϕ)
]d/2

. (7)

We will rederive this result using a rather different
method at the end of the paper. Given the strong cou-
pling to the TLS environment, one intuitively expects
classical diffusive dynamics at long times. Surprisingly,
the actual evolution is radically different. Consider first
the probability at long times of finding a particle back
at the origin, P00(z → ∞), in Eq. (6). The asymp-
totic expansion for the Bessel function J0(z cosϕ) ≈
√

2/π cos(z cosϕ−π/4)/(z cosϕ) is not possible because
cosϕ→ 0 for ϕ→ ±π/2. In fact, in the t→ ∞ limit the
dominant contribution (for d > 1) comes from ϕ ≈ ±π/2.
Then

P00(z → ∞) ≈ 1

π

∫ ∞

−∞

dϕJ2d
0 (zϕ) =

Ad

∆ot
, (8)

where Ad = (2π)−1
∫∞

−∞
dxJ2d

0 (x) is a constant (in d = 1

there is an additional ln(2∆ot) factor). This result is
already rather peculiar since in d > 2 the decay of P00(t)

is integrable both in the classical diffusion, P
(cl)
00 ∝ t−d/2,

and in the ideal, or ballistic, quantum propagation, P o
00 ∝
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t−d. We get qualitatively similar answers for the broad
initial state (7), where

P00(z → ∞) ≈ AdR
2−d

∆ot
, (9)

and Ad = 2π−(1+d/2)
∫∞

0
dx/(1+x2)d/2. The dependence

on the initial wave-packet spread in the long time-limit
is another unusual feature of the solution.

From the divergence of the total time spent at the ori-

gin τ =
∫ t→∞

0
dτP0(τ) ∝ ∆−1

o ln(∆ot) → ∞ one’s first
suspicion is that the strong environmental decoherence
is causing some kind of quasi-localization of the particle,
analogous to weak localisation in solid-state physics. It
then comes as an astonishing paradox that a calculation
of the mean-square displacement from (6) gives

< ((n(t) − n(0))2 >= 12
∑

n

n2Pn0(z) =
d

2
(∆ot)

2 ,

(10)
which is only a factor of two smaller then the coher-
ent quantum evolution! Thus the solution shows quasi-
localsation near the origin, coexisting with coherent bal-
listic dynamics at large distances.

Having both P00(t) ∝ 1/t and
∑

n
n2Pn0(t) ∝ t2 at

the same time is obviously inconsistent with the sim-
ple scaling form t−df(n2/t2). The solution to the para-
dox requires a more complex shape for the distribution
function, which we show in Fig. 1 and derive here for
the Gaussian initial state. We introduce new variables
r = n/R and u = z/R2 to simplify the integral in (7) to:

Pr0(u) =

(

1

πR2

)d/2 ∫ 2π

0

dϕ

2π

e−r2/(1+u2 cos2 ϕ)

[1 + u2 cos2 ϕ)]d/2
. (11)

It is straightforward at this point, by considering the
long-time limit u ≫ 1, to derive the following relations
for the intermediate

Pn0(t) ≈
Γ
(

d−1
2

)

2πd/2+1

R

∆ot nd−1
, (R ≪ n≪ ∆ot/R) ,

(12)
and large (n→ ∞) length scales

Pn0(t) ≈
1

π(d+1)/2n

(

R

2∆ot

)d−1

e−n2(R/2∆ot)2 . (13)

As expected from (9), one has an increased probability of
finding a walker at the origin. Since the power-law decay
1/nd−1 is not integrable, the normalization integral and
〈n2〉 are still determined by the parameter z, but the
probability of being at the origin is enhanced over that
at a distance ∆ot/R by a factor (∆ot/R)d−1.

Not surprisingly, the thermodynamics of this sys-
tem is also peculiar. The partition function Z =
∫ 2π

0
(dϕ/2π)Id

0 (2∆o cosϕ/T ) is leading to a free energy
in the low-temperature limit T ≪ ∆o given by F (T ) ∼
−T (d/2 + 1/2) lnT + const.
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FIG. 1: (Color online). Form of 4πn2Pn0(t) after time t such
that z = 2∆ot ≫ R2, calculated from Eq.(11) with z = 2000
and R = 10 for the three-dimensional walker. The inset for
lnPn0 shows the asymptotic decay.

Finally, let us note that the strong-field Hamiltonian
(5) gives similar behaviour. For strong decoherence we
find that an initially localized state at the origin propa-
gates as

Pn0(z) =

∫ ∞

0

dy e−y P 0
n0(zJM (2

√
κy)) . (14)

and analysis of this shows the same long-time features as
above.

Physical interpretation: A path integral analy-
sis provides some insight here. The anomalous short-
distance behaviour arises because the effective interac-
tion between the 2 paths of the density matrix, gener-
ated by interactions with the spin bath environment, has
long-time memory effects in it - this is because the bath
has a degenerate energy spectrum (this is reminiscent of
weak localisation[26]). But then how can we explain the
long-range ballistic tail? Usually even very weak interac-
tion with a bath gives classical diffusion at long ranges,
because the environment ’measures’ the position of the
particle as it travels along a given path[27]. For this the
environment does not have to record all possible trajec-
tories of the particle - it only needs to track a ’coarse-
grained’ trajectory[28]. The same is true if the environ-
ment couples to the particle velocity, from measurements
of which one can also reconstruct its trajectory.

The answer to the paradox is interesting. Notice that
in (4) and (5) the environmental coupling does not distin-
guish different particle positions in the space of the graph
(ie., between different graph nodes), nor the direction of
transition between them; it only records that transitions
between them have occurred. This leaves room for the
constructive interference of many very large paths on the
graph.

To gain more insight into the problem we rewrite the
Hamiltonian (4) in the momentum representation for the
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walker and a rotated basis for the TLS spins (rotating
σx

k → σz
k). In this basis the Hamiltonian is diagonal;

writing φ =
∑

k αkσ
z
k, and given some TLS spin distribu-

tion {σz
k} with a given φ, then H acts on the eigenstates

|k, {σz
k}〉 according to

H |k, {σz
k}〉 = cosϕ ǫo(k) |k, {σz

k}〉 , (15)

If we now start from the initially localized state for the
walker and arbitrary

∏

k |σz
k〉 state for the environment

(in the original, unrotated basis) the system is an equal-
weight superposition of all eigenstates. We immediately
see that states with the same ϕ evolve coherently with
a renormalized hopping amplitude ∆o cosϕ, and in the
strong coupling limit all values of ϕ on the [0, 2π] interval
are equally represented (thus we rederive the result given
above in eqtns. (6) and (7)). The ballistic long-time be-
haviour comes from those portions of this mixture with
| cosϕ| ∼ 1. The anomalous ’sub-diffusive’ long-time be-
havior at the graph origin, on the other hand, comes from
a small fraction ∼ 1/z of states having very small effec-
tive ∆o cosϕ < 1/t, which cannot propagate anywhere
at all!

In quantum information processing systems, where the
walk can occur in different kinds of information space,
no general principle forces the environmental couplings
to distinguish either the different graph nodes, or the di-
rection of transition between them. Thus we see that in
the design of quantum computers and certain search al-
gorithms, it becomes of considerable interest to look at
quantum walkers for which environmental decoherence
may even be strong, provided it is not projecting parti-
cle states onto either the ’position’ or ’momentum’ bases
in the information space defined by the graph on which
the walk takes place. More generally, we see that there
is an interesting class of systems for which the long-time
behaviour is very far from diffusive, even in the strong de-
coherence limit- instead, it combines a short-range ’sub-
diffusive’ behaviour with long-range coherent dynamics.

NP thanks the BEC-INFM center at the University
of Trento for hospitality and support, and PCES thanks
NSERC, PITP, and the CIAR for support. We also thank
A Hines, G Milburn, and particularly AJ Leggett, for
very illuminating discussions of these results.
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