3,168 research outputs found
DELINEATION OF TRACKS OF HEAVY COSMIC RAYS AND NUCLEAR PROCESSES WITHIN LARGE SILVER CHLORIDE CRYSTALS
Delineation of tracks of heavy cosmic rays and nuclear processes with in large silver chloride crystal
A reconnaissance space sensing investigation of crustal structure for a strip from the eastern Sierra Nevada to the Colorado Plateau
There are no author-identified significant results in this report. Research progress in applications of ERTS-1 MSS imagery in study of Basin-Range tectonics is summarized. Field reconnaissance of ERTS-1 image anomalies has resulted in recognition of previously unreported fault zones and regional structural control of volcanic and plutonic activity. NIMBUS, Apollo 9, X-15, U-2, and SLAR imagery are discussed with specific applications, and methods of image enhancement and analysis employed in the research are summarized. Areas studied and methods employed in geologic field work are outlined
Sediment Denitrification In The Gulf Of Mexico Zone Of Hypoxia
The largest zone of anthropogenic bottom water hypoxia in the Western Hemisphere occurs seasonally in the northern Gulf of Mexico between the Mississippi River delta and the coast of eastern Texas. This zone of hypoxia reaches its greatest extent in the summer months and is a consequence of seasonal stratification of the water column combined with the decomposition of organic matter derived from accelerated rates of primary production. This enhanced productivity is driven primarily by the input of inorganic nitrogen from the Mississippi River. There are 3 likely sinks for fixed nitrogen within this zone of hypoxia: sequestration in the sediment, dispersion and dilution into the Gulf of Mexico, and denitrification. We assessed potential denitrification rates at 7 stations in the zone of hypoxia during the summer of 1999. Those data are compared with bottom water nitrate, ammonium and dissolved oxygen (DO) concentrations. No denitrification was observed in the water column. Denitrification potential rates in the surface sediments were unexpectedly low and ranged between 39.8 and 108.1 mumol m(-1) h(-1). The highest rates were observed at stations with bottom water DO concentrations between 1 and 3 mg l(-1). Denitrification activity was significantly lower at stations where DO was lower than 1 mg l(-1) or higher than 3 mg l(-1). Nutrient data for these stations demonstrate that as anoxia is approached, the dominant species of nitrogen shifts from nitrate to ammonium. The shift in nitrogen species suggests competition between microbial populations in the sediment community. The lower denitrification rates at stations with bottom water DO l(-1) may be due to nitrate limitation or an increase in the competitive advantage of microorganisms capable of dissimilatory nitrate reduction to ammonium (DNRA). Suppression of denitrification at low DO by any mechanism will increase the residence time of bioavailable nitrogen. This trend could act as a positive feedback mechanism in the formation of hypoxic bottom waters
Architectures for a quantum random access memory
A random access memory, or RAM, is a device that, when interrogated, returns
the content of a memory location in a memory array. A quantum RAM, or qRAM,
allows one to access superpositions of memory sites, which may contain either
quantum or classical information. RAMs and qRAMs with n-bit addresses can
access 2^n memory sites. Any design for a RAM or qRAM then requires O(2^n)
two-bit logic gates. At first sight this requirement might seem to make large
scale quantum versions of such devices impractical, due to the difficulty of
constructing and operating coherent devices with large numbers of quantum logic
gates. Here we analyze two different RAM architectures (the conventional fanout
and the "bucket brigade") and propose some proof-of-principle implementations
which show that in principle only O(n) two-qubit physical interactions need
take place during each qRAM call. That is, although a qRAM needs O(2^n) quantum
logic gates, only O(n) need to be activated during a memory call. The resulting
decrease in resources could give rise to the construction of large qRAMs that
could operate without the need for extensive quantum error correction.Comment: 10 pages, 7 figures. Updated version includes the answers to the
Refere
Decoherence and Quantum Walks: anomalous diffusion and ballistic tails
The common perception is that strong coupling to the environment will always
render the evolution of the system density matrix quasi-classical (in fact,
diffusive) in the long time limit. We present here a counter-example, in which
a particle makes quantum transitions between the sites of a d-dimensional
hypercubic lattice whilst strongly coupled to a bath of two-level systems which
'record' the transitions. The long-time evolution of an initial wave packet
is found to be most unusual: the mean square displacement of the particle
density matrix shows long-range ballitic behaviour, but simultaneously a kind
of weakly-localised behaviour near the origin. This result may have important
implications for the design of quantum computing algorithms, since it describes
a class of quantum walks.Comment: 4 pages, 1 figur
Quantum information and precision measurement
We describe some applications of quantum information theory to the analysis
of quantum limits on measurement sensitivity. A measurement of a weak force
acting on a quantum system is a determination of a classical parameter
appearing in the master equation that governs the evolution of the system;
limitations on measurement accuracy arise because it is not possible to
distinguish perfectly among the different possible values of this parameter.
Tools developed in the study of quantum information and computation can be
exploited to improve the precision of physics experiments; examples include
superdense coding, fast database search, and the quantum Fourier transform.Comment: 13 pages, 1 figure, proof of conjecture adde
A Quantum Random Walk Search Algorithm
Quantum random walks on graphs have been shown to display many interesting
properties, including exponentially fast hitting times when compared with their
classical counterparts. However, it is still unclear how to use these novel
properties to gain an algorithmic speed-up over classical algorithms. In this
paper, we present a quantum search algorithm based on the quantum random walk
architecture that provides such a speed-up. It will be shown that this
algorithm performs an oracle search on a database of items with
calls to the oracle, yielding a speed-up similar to other quantum
search algorithms. It appears that the quantum random walk formulation has
considerable flexibility, presenting interesting opportunities for development
of other, possibly novel quantum algorithms.Comment: 13 pages, 3 figure
Regional pressure and temperature differences across the injured human brain : comparisons between intraparenchymal and ventricular measurements
Introduction: Intraparenchymal, multimodality sensors are commonly used in the management of patients with severe traumatic brain injury (TBI). The ‘gold standard’, based on accuracy, reliability and cost for intracranial pressure (ICP) monitoring is within the cerebral ventricle (external strain gauge). There are no standards yet for intracerebral temperature monitoring and little is known of temperature differences between brain tissue and ventricle. The aim of the study therefore was to determine pressure and temperature differences at intraparenchymal and ventricular sites during five days of continuous neurominitoring.
Methods: Patients with severe TBI requiring emergency surgery. Inclusion criteria: patients who required ICP monitoring were eligible for recruitment. Two intracerebral probe types were used: a) intraventricular, dual parameter sensor (measuring pressure, temperature) with inbuilt catheter for CSF drainage: b) multiparameter intraparenchymal sensor measuring pressure, temperature and oxygen partial pressure. All sensors were inserted during surgery and under aseptic conditions.
Results: Seventeen patients, 12 undergoing neurosurgery (decompressive craniectomy n=8, craniotomy n=4) aged 21–78 years were studied. Agreement of measures for 9540 brain tissue-ventricular temperature ‘pairs’ and 10,291 brain tissue-ventricular pressure ‘pairs’ were determined using mixed model to compare mean temperature and pressure for longitudinal data. There was no significant overall difference for mean temperature (p=0.92) or mean pressure readings (p=0.379) between tissue and ventricular sites. With 95.8% of paired temperature readings within 2SD (−0.4 to 0.4°C) differences in temperature between brain tissue and ventricle were clinically insignificant. For pressure, 93.5% of readings pairs fell within the 2SD range (−9.4756 to 7.8112 mmHg) (Fig. 2). However, for individual patients, agreement for mean tissue-ventricular pressure differences was poor on occasions.
Conclusions: There is good overall agreement between paired temperature measurements obtained from deep white matter and brain ventricle in patients with and without early neurosurgery. For paired ICP measurements, 93.5% of readings were within 2SD of mean difference. Whilst the majority of paired readings were comparable (within 10mmHg) clinically relevant tissue-ventricular dissociations were noted. Further work is required to unravel the events responsible for short intervals of pressure dissociation before tissue pressure readings can be definitively accepted as a reliable surrogate for ventricular pressure.</p
Photon collection from a trapped ion--cavity system
We present the design and implementation of a trapped ion cavity QED system.
A single ytterbium ion is confined by a micron-scale ion trap inside a 2 mm
optical cavity. The ion is coherently pumped by near resonant laser light while
the cavity output is monitored as a function of pump intensity and cavity
detuning. We observe a Purcell enhancement of scattered light into the solid
angle subtended by the optical cavity, as well as a three-peak structure
arising from strongly driving the atom. This system can be integrated into
existing atom{photon quantum network protocols and is a pathway towards an
efficient atom{photon quantum interface
Exploring the Cosmic Evolution of Habitability with Galaxy Merger Trees
We combine inferred galaxy properties from a semi-analytic galaxy evolution
model incorporating dark matter halo merger trees with new estimates of
supernova and gamma ray burst rates as a function of metallicity from stellar
population synthesis models incorporating binary interactions. We use these to
explore the stellar mass fraction of galaxies irradiated by energetic
astrophysical transients and its evolution over cosmic time, and thus the
fraction which is potentially habitable by life like our own. We find that 18
per cent of the stellar mass in the Universe is likely to have been irradiated
within the last 260 Myr, with GRBs dominating that fraction. We do not see a
strong dependence of irradiated stellar mass fraction on stellar mass or
richness of the galaxy environment. We consider a representative merger tree as
a Local Group analogue, and find that there are galaxies at all masses which
have retained a high habitable fraction (>40 per cent) over the last 6 Gyr, but
also that there are galaxies at all masses where the merger history and
associated star formation have rendered galaxies effectively uninhabitable.
This illustrates the need to consider detailed merger trees when evaluating the
cosmic evolution of habitability.Comment: 11 page, 10 figures. MNRAS accepted 13th Dec 2017. Updated to match
accepted version, with additional discussion of metallicity effect
- …