1,590 research outputs found

    Noise resistance of adiabatic quantum computation using random matrix theory

    Full text link
    Besides the traditional circuit-based model of quantum computation, several quantum algorithms based on a continuous-time Hamiltonian evolution have recently been introduced, including for instance continuous-time quantum walk algorithms as well as adiabatic quantum algorithms. Unfortunately, very little is known today on the behavior of these Hamiltonian algorithms in the presence of noise. Here, we perform a fully analytical study of the resistance to noise of these algorithms using perturbation theory combined with a theoretical noise model based on random matrices drawn from the Gaussian Orthogonal Ensemble, whose elements vary in time and form a stationary random process.Comment: 9 pages, 3 figure

    Discrete single-photon quantum walks with tunable decoherence

    Get PDF
    Quantum walks have a host of applications, ranging from quantum computing to the simulation of biological systems. We present an intrinsically stable, deterministic implementation of discrete quantum walks with single photons in space. The number of optical elements required scales linearly with the number of steps. We measure walks with up to 6 steps and explore the quantum-to-classical transition by introducing tunable decoherence. Finally, we also investigate the effect of absorbing boundaries and show that decoherence significantly affects the probability of absorption.Comment: Published version, 5 pages, 4 figure

    Hitting Time of Quantum Walks with Perturbation

    Full text link
    The hitting time is the required minimum time for a Markov chain-based walk (classical or quantum) to reach a target state in the state space. We investigate the effect of the perturbation on the hitting time of a quantum walk. We obtain an upper bound for the perturbed quantum walk hitting time by applying Szegedy's work and the perturbation bounds with Weyl's perturbation theorem on classical matrix. Based on the definition of quantum hitting time given in MNRS algorithm, we further compute the delayed perturbed hitting time (DPHT) and delayed perturbed quantum hitting time (DPQHT). We show that the upper bound for DPQHT is actually greater than the difference between the square root of the upper bound for a perturbed random walk and the square root of the lower bound for a random walk.Comment: 9 page

    Approximating Fractional Time Quantum Evolution

    Full text link
    An algorithm is presented for approximating arbitrary powers of a black box unitary operation, Ut\mathcal{U}^t, where tt is a real number, and U\mathcal{U} is a black box implementing an unknown unitary. The complexity of this algorithm is calculated in terms of the number of calls to the black box, the errors in the approximation, and a certain `gap' parameter. For general U\mathcal{U} and large tt, one should apply U\mathcal{U} a total of ⌊t⌋\lfloor t \rfloor times followed by our procedure for approximating the fractional power Ut−⌊t⌋\mathcal{U}^{t-\lfloor t \rfloor}. An example is also given where for large integers tt this method is more efficient than direct application of tt copies of U\mathcal{U}. Further applications and related algorithms are also discussed.Comment: 13 pages, 2 figure

    Quantum Algorithm for Dynamic Programming Approach for DAGs. Applications for Zhegalkin Polynomial Evaluation and Some Problems on DAGs

    Full text link
    In this paper, we present a quantum algorithm for dynamic programming approach for problems on directed acyclic graphs (DAGs). The running time of the algorithm is O(n^mlog⁥n^)O(\sqrt{\hat{n}m}\log \hat{n}), and the running time of the best known deterministic algorithm is O(n+m)O(n+m), where nn is the number of vertices, n^\hat{n} is the number of vertices with at least one outgoing edge; mm is the number of edges. We show that we can solve problems that use OR, AND, NAND, MAX and MIN functions as the main transition steps. The approach is useful for a couple of problems. One of them is computing a Boolean formula that is represented by Zhegalkin polynomial, a Boolean circuit with shared input and non-constant depth evaluating. Another two are the single source longest paths search for weighted DAGs and the diameter search problem for unweighted DAGs.Comment: UCNC2019 Conference pape

    Engaging with History after Macpherson

    Get PDF
    The Race Relations Amendment Act (2000) identifies a key role for education, and more specifically history, in promoting ‘race equality’ in Britain. In this article Ian Grosvenor and Kevin Myers consider the extent of young people’s current engagement with the history of ‘diversity, change and immigration’ which underpins the commitment to ‘race equality’. Finding that in many of Britain’s schools and universities a singular and exclusionary version of history continues to dominate the curriculum, they go on to consider the reasons for the neglect of multiculturalism. The authors identify the development of an aggressive national identity that depends on the past for its legitimacy and argue that this sense of the past is an important obstacle to future progress

    Efficient and robust entanglement generation in a many-particle system with resonant dipole-dipole interactions

    Get PDF
    We propose and discuss a scheme for robust and efficient generation of many-particle entanglement in an ensemble of Rydberg atoms with resonant dipole-dipole interactions. It is shown that in the limit of complete dipole blocking, the system is isomorphic to a multimode Jaynes-Cummings model. While dark-state population transfer is not capable of creating entanglement, other adiabatic processes are identified that lead to complex, maximally entangled states, such as the N-particle analog of the GHZ state in a few steps. The process is robust, works for even and odd particle numbers and the characteristic time for entanglement generation scales with N^a, with a being less than unity.Comment: 4 figure

    Asymptotic entanglement in a two-dimensional quantum walk

    Full text link
    The evolution operator of a discrete-time quantum walk involves a conditional shift in position space which entangles the coin and position degrees of freedom of the walker. After several steps, the coin-position entanglement (CPE) converges to a well defined value which depends on the initial state. In this work we provide an analytical method which allows for the exact calculation of the asymptotic reduced density operator and the corresponding CPE for a discrete-time quantum walk on a two-dimensional lattice. We use the von Neumann entropy of the reduced density operator as an entanglement measure. The method is applied to the case of a Hadamard walk for which the dependence of the resulting CPE on initial conditions is obtained. Initial states leading to maximum or minimum CPE are identified and the relation between the coin or position entanglement present in the initial state of the walker and the final level of CPE is discussed. The CPE obtained from separable initial states satisfies an additivity property in terms of CPE of the corresponding one-dimensional cases. Non-local initial conditions are also considered and we find that the extreme case of an initial uniform position distribution leads to the largest CPE variation.Comment: Major revision. Improved structure. Theoretical results are now separated from specific examples. Most figures have been replaced by new versions. The paper is now significantly reduced in size: 11 pages, 7 figure

    Role of quantum coherence in chromophoric energy transport

    Get PDF
    The role of quantum coherence and the environment in the dynamics of excitation energy transfer is not fully understood. In this work, we introduce the concept of dynamical contributions of various physical processes to the energy transfer efficiency. We develop two complementary approaches, based on a Green's function method and energy transfer susceptibilities, and quantify the importance of the Hamiltonian evolution, phonon-induced decoherence, and spatial relaxation pathways. We investigate the Fenna-Matthews-Olson protein complex, where we find a contribution of coherent dynamics of about 10% and of relaxation of 80%.Comment: 5 pages, 3 figures, included static disorder, correlated environmen
    • 

    corecore