2,737 research outputs found
Searches on star graphs and equivalent oracle problems
We examine a search on a graph among a number of different kinds of objects
(vertices), one of which we want to find. In a standard graph search, all of
the vertices are the same, except for one, the marked vertex, and that is the
one we wish to find. We examine the case in which the unmarked vertices can be
of different types, so the background against which the search is done is not
uniform. We find that the search can still be successful, but the probability
of success is lower than in the uniform background case, and that probability
decreases with the number of types of unmarked vertices. We also show how the
graph searches can be rephrased as equivalent oracle problems
Universal quantum computation using the discrete time quantum walk
A proof that continuous time quantum walks are universal for quantum
computation, using unweighted graphs of low degree, has recently been presented
by Childs [PRL 102 180501 (2009)]. We present a version based instead on the
discrete time quantum walk. We show the discrete time quantum walk is able to
implement the same universal gate set and thus both discrete and continuous
time quantum walks are computational primitives. Additionally we give a set of
components on which the discrete time quantum walk provides perfect state
transfer.Comment: 9 pages, 10 figures. Updated after referee comments - Section V
expanded and minor changes to other parts of the tex
Unambiguous discrimination among quantum operations
We address the problem of unambiguous discrimination among a given set of
quantum operations. The necessary and sufficient condition for them to be
unambiguously distinguishable is derived in the cases of single use and
multiple uses respectively. For the latter case we explicitly construct the
input states and corresponding measurements that accomplish the task. It is
found that the introduction of entanglement can improve the discrimination.Comment: 5 pages, no figur
Architectures for a quantum random access memory
A random access memory, or RAM, is a device that, when interrogated, returns
the content of a memory location in a memory array. A quantum RAM, or qRAM,
allows one to access superpositions of memory sites, which may contain either
quantum or classical information. RAMs and qRAMs with n-bit addresses can
access 2^n memory sites. Any design for a RAM or qRAM then requires O(2^n)
two-bit logic gates. At first sight this requirement might seem to make large
scale quantum versions of such devices impractical, due to the difficulty of
constructing and operating coherent devices with large numbers of quantum logic
gates. Here we analyze two different RAM architectures (the conventional fanout
and the "bucket brigade") and propose some proof-of-principle implementations
which show that in principle only O(n) two-qubit physical interactions need
take place during each qRAM call. That is, although a qRAM needs O(2^n) quantum
logic gates, only O(n) need to be activated during a memory call. The resulting
decrease in resources could give rise to the construction of large qRAMs that
could operate without the need for extensive quantum error correction.Comment: 10 pages, 7 figures. Updated version includes the answers to the
Refere
Improved quantum algorithms for the ordered search problem via semidefinite programming
One of the most basic computational problems is the task of finding a desired
item in an ordered list of N items. While the best classical algorithm for this
problem uses log_2 N queries to the list, a quantum computer can solve the
problem using a constant factor fewer queries. However, the precise value of
this constant is unknown. By characterizing a class of quantum query algorithms
for ordered search in terms of a semidefinite program, we find new quantum
algorithms for small instances of the ordered search problem. Extending these
algorithms to arbitrarily large instances using recursion, we show that there
is an exact quantum ordered search algorithm using 4 log_{605} N \approx 0.433
log_2 N queries, which improves upon the previously best known exact algorithm.Comment: 8 pages, 4 figure
Contextuality in Measurement-based Quantum Computation
We show, under natural assumptions for qubit systems, that measurement-based
quantum computations (MBQCs) which compute a non-linear Boolean function with
high probability are contextual. The class of contextual MBQCs includes an
example which is of practical interest and has a super-polynomial speedup over
the best known classical algorithm, namely the quantum algorithm that solves
the Discrete Log problem.Comment: Version 3: probabilistic version of Theorem 1 adde
Distance measures to compare real and ideal quantum processes
With growing success in experimental implementations it is critical to
identify a "gold standard" for quantum information processing, a single measure
of distance that can be used to compare and contrast different experiments. We
enumerate a set of criteria such a distance measure must satisfy to be both
experimentally and theoretically meaningful. We then assess a wide range of
possible measures against these criteria, before making a recommendation as to
the best measures to use in characterizing quantum information processing.Comment: 15 pages; this version in line with published versio
A Quantum Random Walk Search Algorithm
Quantum random walks on graphs have been shown to display many interesting
properties, including exponentially fast hitting times when compared with their
classical counterparts. However, it is still unclear how to use these novel
properties to gain an algorithmic speed-up over classical algorithms. In this
paper, we present a quantum search algorithm based on the quantum random walk
architecture that provides such a speed-up. It will be shown that this
algorithm performs an oracle search on a database of items with
calls to the oracle, yielding a speed-up similar to other quantum
search algorithms. It appears that the quantum random walk formulation has
considerable flexibility, presenting interesting opportunities for development
of other, possibly novel quantum algorithms.Comment: 13 pages, 3 figure
LGP2 plays a critical role in sensitizing mda-5 to activation by double-stranded RNA.
The DExD/H box RNA helicases retinoic acid-inducible gene-I (RIG-I) and melanoma differentiation associated gene-5 (mda-5) sense viral RNA in the cytoplasm of infected cells and activate signal transduction pathways that trigger the production of type I interferons (IFNs). Laboratory of genetics and physiology 2 (LGP2) is thought to influence IFN production by regulating the activity of RIG-I and mda-5, although its mechanism of action is not known and its function is controversial. Here we show that expression of LGP2 potentiates IFN induction by polyinosinic-polycytidylic acid [poly(I:C)], commonly used as a synthetic mimic of viral dsRNA, and that this is particularly significant at limited levels of the inducer. The observed enhancement is mediated through co-operation with mda-5, which depends upon LGP2 for maximal activation in response to poly(I:C). This co-operation is dependent upon dsRNA binding by LGP2, and the presence of helicase domain IV, both of which are required for LGP2 to interact with mda-5. In contrast, although RIG-I can also be activated by poly(I:C), LGP2 does not have the ability to enhance IFN induction by RIG-I, and instead acts as an inhibitor of RIG-I-dependent poly(I:C) signaling. Thus the level of LGP2 expression is a critical factor in determining the cellular sensitivity to induction by dsRNA, and this may be important for rapid activation of the IFN response at early times post-infection when the levels of inducer are low
Feminizing political parties: women’s party member organizations within European parliamentary parties
Party member women’s organizations were early features of party development. While some contemporary studies maintain these are important sites for the substantive representation of women, there is also a claim that they are in decline. Our primary purpose here is to establish the existence of party member women’s organizations – as one test of the first dimension of party feminization: the inclusion of women. We draw on new survey data of 17 European countries provided by Scarrow, Poguntke and Webb. We establish that almost half have a party member women’s organization. The new data also permits analysis of relationships between party member women’s organization and gender quotas for the top party leadership body (National Executive Committee (NEC)), women’s presence among the party leadership and candidate quota rules. Together we see these (i) as a means to establish whether women are marginalized within the party, thereby limiting descriptive representation and (ii) as surrogate measures for women’s substantive representation. We importantly find that the presence of a party member women’s organization does not come at the cost of women’s presence on the NEC. In the final section, we turn our attention to building a new comparative research agenda that more fully addresses substantive representation
- …