1,915 research outputs found
Thermal Effects on the Magnetic Field Dependence of Spin Transfer Induced Magnetization Reversal
We have developed a self-aligned, high-yield process to fabricate CPP
(current perpendicular to the plane) magnetic sensors of sub 100 nm dimensions.
A pinned synthetic antiferromagnet (SAF) is used as the reference layer which
minimizes dipole coupling to the free layer and field induced rotation of the
reference layer. We find that the critical currents for spin transfer induced
magnetization reversal of the free layer vary dramatically with relatively
small changes the in-plane magnetic field, in contrast to theoretical
predictions based on stability analysis of the Gilbert equations of
magnetization dynamics including Slonczewski-type spin-torque terms. The
discrepancy is believed due to thermal fluctuations over the time scale of the
measurements. Once thermal fluctuations are taken into account, we find good
quantitative agreement between our experimental results and numerical
simulations.Comment: 14 pages, 4 figures, Submitted to Appl. Phys. Lett., Comparison of
some of these results with a model described by N. Smith in cond-mat/040648
Time-resolved investigation of magnetization dynamics of arrays of non-ellipsoidal nanomagnets with a non-uniform ground state
We have performed time-resolved scanning Kerr microscopy (TRSKM) measurements
upon arrays of square ferromagnetic nano-elements of different size and for a
range of bias fields. The experimental results were compared to micromagnetic
simulations of model arrays in order to understand the non-uniform precessional
dynamics within the elements. In the experimental spectra two branches of
excited modes were observed to co-exist above a particular bias field. Below
the so-called crossover field, the higher frequency branch was observed to
vanish. Micromagnetic simulations and Fourier imaging revealed that modes from
the higher frequency branch had large amplitude at the center of the element
where the effective field was parallel to the bias field and the static
magnetization. Modes from the lower frequency branch had large amplitude near
the edges of the element perpendicular to the bias field. The simulations
revealed significant canting of the static magnetization and the effective
field away from the direction of the bias field in the edge regions. For the
smallest element sizes and/or at low bias field values the effective field was
found to become anti-parallel to the static magnetization. The simulations
revealed that the majority of the modes were de-localized with finite amplitude
throughout the element, while the spatial character of a mode was found to be
correlated with the spatial variation of the total effective field and the
static magnetization state. The simulations also revealed that the frequencies
of the edge modes are strongly affected by the spatial distribution of the
static magnetization state both within an element and within its nearest
neighbors
Helicity cascades in rotating turbulence
The effect of helicity (velocity-vorticity correlations) is studied in direct
numerical simulations of rotating turbulence down to Rossby numbers of 0.02.
The results suggest that the presence of net helicity plays an important role
in the dynamics of the flow. In particular, at small Rossby number, the energy
cascades to large scales, as expected, but helicity then can dominate the
cascade to small scales. A phenomenological interpretation in terms of a direct
cascade of helicity slowed down by wave-eddy interactions leads to the
prediction of new inertial indices for the small-scale energy and helicity
spectra.Comment: 7 pages, 8 figure
Mesoscopic Cavity Quantum Electrodynamics with Quantum Dots
We describe an electrodynamic mechanism for coherent, quantum mechanical
coupling between spacially separated quantum dots on a microchip. The technique
is based on capacitive interactions between the electron charge and a
superconducting transmission line resonator, and is closely related to atomic
cavity quantum electrodynamics. We investigate several potential applications
of this technique which have varying degrees of complexity. In particular, we
demonstrate that this mechanism allows design and investigation of an on-chip
double-dot microscopic maser. Moreover, the interaction may be extended to
couple spatially separated electron spin states while only virtually populating
fast-decaying superpositions of charge states. This represents an effective,
controllable long-range interaction, which may facilitate implementation of
quantum information processing with electron spin qubits and potentially allow
coupling to other quantum systems such as atomic or superconducting qubits.Comment: 8 pages, 5 figure
Effective diffusion of scalar fields in a chaotic flow
Copyright © 2008 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in Physics of Fluids 20 (2008) and may be found at http://link.aip.org/link/?PHFLE6/20/107103/1The advection of a tracer field in a fluid flow can create complex scalar structures and increase the effect of weak diffusion by orders of magnitude. One tool to quantify this is to measure the flux of scalar across contour lines of constant scalar. This gives a diffusion equation in area coordinates with an effective diffusion that depends on the structure of the scalar field and, in particular, takes large values when scalar contours become very extended. The present paper studies the properties of this effective diffusion using a mixture of analytical and numerical tools. First the presence of hyperbolic stationary points, that is, saddles, in the scalar concentration field is investigated analytically, and it is shown that these give rise to singular spikes in the effective diffusion. This is confirmed in numerical simulations in which complex scalar fields are generated using a time-periodic flow. Issues of numerical resolution are discussed and results are given on the dependence of the effective diffusion on grid resolution and discretization in area or scalar values. These simulations show complex dependence of the effective diffusion on time as saddle points appear and disappear in the scalar field. It is found that time averaging (in the presence of an additional scalar source term) removes this dependence to leave robust results for the effective diffusion
Bounding biomass in the Fisher equation
The FKPP equation with a variable growth rate and advection by an
incompressible velocity field is considered as a model for plankton dispersed
by ocean currents. If the average growth rate is negative then the model has a
survival-extinction transition; the location of this transition in the
parameter space is constrained using variational arguments and delimited by
simulations. The statistical steady state reached when the system is in the
survival region of parameter space is characterized by integral constraints and
upper and lower bounds on the biomass and productivity that follow from
variational arguments and direct inequalities. In the limit of
zero-decorrelation time the velocity field is shown to act as Fickian diffusion
with an eddy diffusivity much larger than the molecular diffusivity and this
allows a one-dimensional model to predict the biomass, productivity and
extinction transitions. All results are illustrated with a simple growth and
stirring model.Comment: 32 Pages, 13 Figure
- …