7,500 research outputs found

    Quasi-linear approximation of the HMRI

    Get PDF

    Review: The coconut

    Get PDF

    Aerodynamic configuration development of the highly maneuverable aircraft technology remotely piloted research vehicle

    Get PDF
    The aerodynamic development of the highly maneuverable aircraft technology remotely piloted research vehicle (HiMAT/RPRV) from the conceptual design to the final configuration is presented. The design integrates several advanced concepts to achieve a high degree of transonic maneuverability, and was keyed to sustained maneuverability goals while other fighter typical performance characteristics were maintained. When tests of the baseline configuration indicated deficiencies in the technology integration and design techniques, the vehicle was reconfigured to satisfy the subcritical and supersonic requirements. Drag-due-to-lift levels only 5 percent higher than the optimum were obtained for the wind tunnel model at a lift coefficient of 1 for Mach numbers of up to 0.8. The transonic drag rise was progressively lowered with the application of nonlinear potential flow analyses coupled with experimental data

    Explicit Instruction Elements in Core Reading Programs

    Get PDF
    Classroom teachers are provided instructional recommendations for teaching reading from their adopted core reading programs (CRPs). Explicit instruction elements or what is also called instructional moves, including direct explanation, modeling, guided practice, independent practice, discussion, feedback, and monitoring, were examined within CRP reading lessons. This study sought to answer the question: What elements of explicit instruction or instructional moves are included in the five most widely published CRP teachers’ edition lessons across five essential components of reading instruction? A content analysis of reading lessons in first, third, and fifth grades within current (copyright 2005-2010), widely used CRPs was conducted to determine the number and types of explicit instruction elements or instructional moves recommended within reading lessons for the following essential components of reading instruction: phonemic awareness, phonics, fluency, vocabulary, and comprehension. Findings offer several implications for publishers of CRPs and educators. First, guided practice was recommended most often in CRP lessons. Second, all five publishers were more similar than different in the number and types of explicit instruction elements or instructional move recommendations. All publishers rarely recommended the use of the explicit instruction elements of feedback and monitoring. Conversely, the explicit instruction elements or instructional moves of discussion and questioning were used almost to the exclusion of other elements of explicit instruction for comprehension lessons. It was also found that the recommendations to use elements of explicit instruction diminished from the lower to the upper grades—offering intermediate-grade teachers fewer explicit instruction recommendations

    Power loss in open cavity diodes and a modified Child Langmuir Law

    Full text link
    Diodes used in most high power devices are inherently open. It is shown that under such circumstances, there is a loss of electromagnetic radiation leading to a lower critical current as compared to closed diodes. The power loss can be incorporated in the standard Child-Langmuir framework by introducing an effective potential. The modified Child-Langmuir law can be used to predict the maximum power loss for a given plate separation and potential difference as well as the maximum transmitted current for this power loss. The effectiveness of the theory is tested numerically.Comment: revtex4, 11 figure

    Association of molecules using a resonantly modulated magnetic field

    Full text link
    We study the process of associating molecules from atomic gases using a magnetic field modulation that is resonant with the molecular binding energy. We show that maximal conversion is obtained by optimising the amplitude and frequency of the modulation for the particular temperature and density of the gas. For small modulation amplitudes, resonant coupling of an unbound atom pair to a molecule occurs at a modulation frequency corresponding to the sum of the molecular binding energy and the relative kinetic energy of the atom pair. An atom pair with an off-resonant energy has a probability of association which oscillates with a frequency and time-varying amplitude which are primarily dependent on its detuning. Increasing the amplitude of the modulation tends to result in less energetic atom pairs being resonantly coupled to the molecular state, and also alters the dynamics of the transfer from continuum states with off-resonant energies. This leads to maxima and minima in the total conversion from the gas as a function of the modulation amplitude. Increasing the temperature of the gas leads to an increase in the modulation frequency providing the best fit to the thermal distribution, and weakens the resonant frequency dependence of the conversion. Mean-field effects can alter the optimal modulation frequency and lead to the excitation of higher modes. Our simulations predict that resonant association can be effective for binding energies of order h×1h \times 1 MHz.Comment: 8 pages latex, figures revised, references updated and typos correcte

    Design and analysis of a supersonic penetration/maneuvering fighter

    Get PDF
    The design of three candidate air combat fighters which would cruise effectively at freestream Mach numbers of 1.6, 2.0, and 2.5 while maintaining good transonic maneuvering capability, is considered. These fighters were designed to deliver aerodynamically controlled dogfight missiles at the design Mach numbers. Studies performed by Rockwell International in May 1974 and guidance from NASA determined the shape and size of these missiles. The principle objective of this study is the aerodynamic design of the vehicles; however, configurations are sized to have realistic structures, mass properties, and propulsion systems. The results of this study show that air combat fighters in the 15,000 to 23,000 pound class would cruise supersonically on dry power and still maintain good transonic maneuvering performance

    QL-BT: Enhancing Behaviour Tree Design and Implementation with Q-Learning

    Get PDF
    Artificial intelligence has become an increasingly important aspect of computer game technology, as designers attempt to deliver engaging experiences for players by creating characters with behavioural realism to match advances in graphics and physics. Recently, behaviour trees have come to the forefront of games AI technology, providing a more intuitive approach than previous techniques such as hierarchical state machines, which often required complex data structures producing poorly structured code when scaled up. The design and creation of behaviour trees, however, requires experienceand effort. This research introduces Q-learning behaviour trees (QL-BT), a method for the application of reinforcement learning to behaviour tree design. The technique facilitates AI designers' use of behaviour trees by assisting them in identifying the most appropriate moment to execute each branch of AI logic, as well as providing an implementation that can be used to debug, analyse and optimize early behaviour tree prototypes. Initial experiments demonstrate that behaviour trees produced by the QL-BT algorithm effectively integrate RL, automate tree design, and are human-readable

    State-to-state rotational transitions in H2_2+H2_2 collisions at low temperatures

    Get PDF
    We present quantum mechanical close-coupling calculations of collisions between two hydrogen molecules over a wide range of energies, extending from the ultracold limit to the super-thermal region. The two most recently published potential energy surfaces for the H2_2-H2_2 complex, the so-called DJ (Diep and Johnson, 2000) and BMKP (Boothroyd et al., 2002) surfaces, are quantitatively evaluated and compared through the investigation of rotational transitions in H2_2+H2_2 collisions within rigid rotor approximation. The BMKP surface is expected to be an improvement, approaching chemical accuracy, over all conformations of the potential energy surface compared to previous calculations of H2_2-H2_2 interaction. We found significant differences in rotational excitation/de-excitation cross sections computed on the two surfaces in collisions between two para-H2_2 molecules. The discrepancy persists over a large range of energies from the ultracold regime to thermal energies and occurs for several low-lying initial rotational levels. Good agreement is found with experiment (Mat\'e et al., 2005) for the lowest rotational excitation process, but only with the use of the DJ potential. Rate coefficients computed with the BMKP potential are an order of magnitude smaller.Comment: Accepted by J. Chem. Phy
    corecore