158 research outputs found
Directly Imaging Rocky Planets from the Ground
Over the past three decades instruments on the ground and in space have
discovered thousands of planets outside the solar system. These observations
have given rise to an astonishingly detailed picture of the demographics of
short-period planets, but are incomplete at longer periods where both the
sensitivity of transit surveys and radial velocity signals plummet. Even more
glaring is that the spectra of planets discovered with these indirect methods
are either inaccessible (radial velocity detections) or only available for a
small subclass of transiting planets with thick, clear atmospheres. Direct
detection can be used to discover and characterize the atmospheres of planets
at intermediate and wide separations, including non-transiting exoplanets.
Today, a small number of exoplanets have been directly imaged, but they
represent only a rare class of young, self-luminous super-Jovian-mass objects
orbiting tens to hundreds of AU from their host stars. Atmospheric
characterization of planets in the <5 AU regime, where radial velocity (RV)
surveys have revealed an abundance of other worlds, is technically feasible
with 30-m class apertures in combination with an advanced AO system,
coronagraph, and suite of spectrometers and imagers. There is a vast range of
unexplored science accessible through astrometry, photometry, and spectroscopy
of rocky planets, ice giants, and gas giants. In this whitepaper we will focus
on one of the most ambitious science goals --- detecting for the first time
habitable-zone rocky (<1.6 R_Earth) exoplanets in reflected light around nearby
M-dwarfsComment: 8 pages, 1 figure, Astro2020 Science White Pape
The Peculiar Debris Disk of HD 111520 as Resolved by the Gemini Planet Imager
Using the Gemini Planet Imager (GPI), we have resolved the circumstellar
debris disk around HD 111520 at a projected range of ~30-100 AU in both total
and polarized -band intensity. The disk is seen edge-on at a position angle
of ~165 along the spine of emission. A slight inclination or
asymmetric warping are covariant and alters the interpretation of the observed
disk emission. We employ 3 point spread function (PSF) subtraction methods to
reduce the stellar glare and instrumental artifacts to confirm that there is a
roughly 2:1 brightness asymmetry between the NW and SE extension. This specific
feature makes HD 111520 the most extreme examples of asymmetric debris disks
observed in scattered light among similar highly inclined systems, such as HD
15115 and HD 106906. We further identify a tentative localized brightness
enhancement and scale height enhancement associated with the disk at ~40 AU
away from the star on the SE extension. We also find that the fractional
polarization rises from 10 to 40% from 0.5" to 0.8" from the star. The
combination of large brightness asymmetry and symmetric polarization fraction
leads us to believe that an azimuthal dust density variation is causing the
observed asymmetry.Comment: 9 pages, 8 Figures, 1 table, Accepted to Ap
A Chromaticity Analysis and PSF Subtraction Techniques for SCExAO/CHARIS Data
We present an analysis of instrument performance using new observations taken with the Coronagraphic High Angular Resolution Imaging Spectrograph (CHARIS) instrument and the Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) system. In a correlation analysis of our data sets (which use the broadband mode covering the J band through the K band in a single spectrum), we find that chromaticity in the SCExAO/CHARIS system is generally worse than temporal stability. We also develop a point-spread function (PSF) subtraction pipeline optimized for the CHARIS broadband mode, including a forward modeling-based exoplanet algorithmic throughput correction scheme. We then present contrast curves using this newly developed pipeline. An analogous subtraction of the same data sets using only the H-band slices yields the same final contrasts as the full JHK sequences; this result is consistent with our chromaticity analysis, illustrating that PSF subtraction using spectral differential imaging (SDI) in this broadband mode is generally not more effective than SDI in the individual J, H, or K bands. In the future, the data processing framework and analysis developed in this paper will be important to consider for additional SCExAO/CHARIS broadband observations and other ExAO instruments which plan to implement a similar integral field spectrograph broadband mode.Natural Sciences and Engineering Council of Canada through the Postgraduate Scholarships-Doctoral discovery grant; Technologies for Exo-Planetary Science Collaborative Research and Training Experience programs; JSPS [23340051, 26220704, 23103002]; Astrobiology Center of the National Institutes of Natural Sciences, Japan; Mt. Cuba Foundation; directors contingency fund at Subaru Telescope; MEXT of the Japanese government [23103002]This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
Managed Metapopulations: Do Salmon Hatchery ‘Sources’ Lead to In-River ‘Sinks’ in Conservation?
Maintaining viable populations of salmon in the wild is a primary goal for many conservation and recovery programs. The frequency and extent of connectivity among natal sources defines the demographic and genetic boundaries of a population. Yet, the role that immigration of hatchery-produced adults may play in altering population dynamics and fitness of natural populations remains largely unquantified. Quantifying, whether natural populations are self-sustaining, functions as sources (population growth rate in the absence of dispersal, λ>1), or as sinks (λ<1) can be obscured by an inability to identify immigrants. In this study we use a new isotopic approach to demonstrate that a natural spawning population of Chinook salmon, (Oncorhynchus tshawytscha) considered relatively healthy, represents a sink population when the contribution of hatchery immigrants is taken into consideration. We retrieved sulfur isotopes (34S/32S, referred to as δ34S) in adult Chinook salmon otoliths (ear bones) that were deposited during their early life history as juveniles to determine whether individuals were produced in hatcheries or naturally in rivers. Our results show that only 10.3% (CI = 5.5 to 18.1%) of adults spawning in the river had otolith δ34S values less than 8.5‰, which is characteristic of naturally produced salmon. When considering the total return to the watershed (total fish in river and hatchery), we estimate that 90.7 to 99.3% (CI) of returning adults were produced in a hatchery (best estimate = 95.9%). When population growth rate of the natural population was modeled to account for the contribution of previously unidentified hatchery immigrants, we found that hatchery-produced fish caused the false appearance of positive population growth. These findings highlight the potential dangers in ignoring source-sink dynamics in recovering natural populations, and question the extent to which declines in natural salmon populations are undetected by monitoring programs
First Resolved Scattered-Light Images of Four Debris Disks in Scorpius-Centaurus with the Gemini Planet Imager
We present the first spatially resolved scattered-light images of four debris disks around members of the Scorpius-Centaurus (Sco-Cen) OB association with high-contrast imaging and polarimetry using the Gemini Planet Imager (GPI). All four disks are resolved for the first time in polarized light, and one disk is also detected in total intensity. The three disks imaged around HD 111161, HD 143675, and HD 145560 are symmetric in both morphology and brightness distribution. The three systems span a range of inclinations and radial extents. The disk imaged around HD 98363 shows indications of asymmetries in morphology and brightness distribution, with some structural similarities to the HD 106906 planet-disk system. Uniquely, HD 98363 has a wide comoving stellar companion, Wray 15-788, with a recently resolved disk with very different morphological properties. HD 98363 A/B is the first binary debris disk system with two spatially resolved disks. All four targets have been observed with ALMA, and their continuum fluxes range from one nondetection to one of the brightest disks in the region. With the new results, a total of 15 A/F stars in Sco-Cen have resolved scattered-light debris disks, and approximately half of these systems exhibit some form of asymmetry. Combining the GPI disk structure results with information from the literature on millimeter fluxes and imaged planets reveals a diversity of disk properties in this young population. Overall, the four newly resolved disks contribute to the census of disk structures measured around A/F stars at this important stage in the development of planetary systems
- …