17 research outputs found
Fundamentals of solid-state electronics
Indeks. *** *** Bibliografi hlm.xxvi, 1010 hlm. : il. ; 23 cm
Fundamentals of solid-state electronics
Indeks. *** *** Bibliografi hlm.xxvi, 1010 hlm. : il. ; 23 cm
Effects of energy distribution of interface traps on recombination dc current-voltage line shape
The effects of energy distributions of Si/SiO2 interface traps in the energy gap of oxidized silicon on the current versus voltage line shape of the electron-hole recombination current are analyzed using the steady-state Shockley-Read-Hall kinetics. Slater's [Insulators, Semiconductors and Metals; Quantum Theory of Molecules and Solids (McGraw-Hill, New York, 1967)] localized bulk perturbation theory applied by us to the interface anticipates U-shaped energy distributions of the density of neutral electron and hole interface traps from random variations of the Si:Si and Si:O bond angles and lengths. Conservation in dissipative transition energy anticipates the rate of electron capture into neutral electron trap to be faster for electron trap energy levels nearer the conduction band edge, and similarly, the rate of hole capture into neutral hole trap to be faster for hole trap energy levels nearer the valence band edge. Line shape broadening is analyzed for discrete and U-shaped energy distributions of interface trap energy levels. The broadened line shapes observed in past experiments, previously attributed to spatial variations of surface dopant impurity concentrations, could also arise from energy distributions of interface trap energy levels. (c) 2006 American Institute of Physics