155 research outputs found

    Detecting Slow Wave Sleep Using a Single EEG Signal Channel

    Get PDF
    Background: In addition to the cost and complexity of processing multiple signal channels, manual sleep staging is also tedious, time consuming, and error-prone. The aim of this paper is to propose an automatic slow wave sleep (SWS) detection method that uses only one channel of the electroencephalography (EEG) signal. New Method: The proposed approach distinguishes itself from previous automatic sleep staging methods by using three specially designed feature groups. The first feature group characterizes the waveform pattern of the EEG signal. The remaining two feature groups are developed to resolve the difficulties caused by interpersonal EEG signal differences. Results and comparison with existing methods: The proposed approach was tested with 1,003 subjects, and the SWS detection results show kappa coefficient at 0.66, an accuracy level of 0.973, a sensitivity score of 0.644 and a positive predictive value of 0.709. By excluding sleep apnea patients and persons whose age is older than 55, the SWS detection results improved to kappa coefficient, 0.76; accuracy, 0.963; sensitivity, 0.758; and positive predictive value, 0.812. Conclusions: With newly developed signal features, this study proposed and tested a single-channel EEG-based SWS detection method. The effectiveness of the proposed approach was demonstrated by applying it to detect the SWS of 1003 subjects. Our test results show that a low SWS ratio and sleep apnea can degrade the performance of SWS detection. The results also show that a large and accurately staged sleep dataset is of great importance when developing automatic sleep staging methods

    Tailoring excitonic states of van der Waals bilayers through stacking configuration, band alignment and valley-spin

    Full text link
    Excitons in monolayer semiconductors have large optical transition dipole for strong coupling with light field. Interlayer excitons in heterobilayers, with layer separation of electron and hole components, feature large electric dipole that enables strong coupling with electric field and exciton-exciton interaction, at the cost that the optical dipole is substantially quenched (by several orders of magnitude). In this letter, we demonstrate the ability to create a new class of excitons in transition metal dichalcogenide (TMD) hetero- and homo-bilayers that combines the advantages of monolayer- and interlayer-excitons, i.e. featuring both large optical dipole and large electric dipole. These excitons consist of an electron that is well confined in an individual layer, and a hole that is well extended in both layers, realized here through the carrier-species specific layer-hybridization controlled through the interplay of rotational, translational, band offset, and valley-spin degrees of freedom. We observe different species of such layer-hybridized valley excitons in different heterobilayer and homobilayer systems, which can be utilized for realizing strongly interacting excitonic/polaritonic gases, as well as optical quantum coherent controls of bidirectional interlayer carrier transfer either with upper conversion or down conversion in energy

    Leveraging Large Language Models for Enhanced Product Descriptions in eCommerce

    Full text link
    In the dynamic field of eCommerce, the quality and comprehensiveness of product descriptions are pivotal for enhancing search visibility and customer engagement. Effective product descriptions can address the 'cold start' problem, align with market trends, and ultimately lead to increased click-through rates. Traditional methods for crafting these descriptions often involve significant human effort and may lack both consistency and scalability. This paper introduces a novel methodology for automating product description generation using the LLAMA 2.0 7B language model. We train the model on a dataset of authentic product descriptions from Walmart, one of the largest eCommerce platforms. The model is then fine-tuned for domain-specific language features and eCommerce nuances to enhance its utility in sales and user engagement. We employ multiple evaluation metrics, including NDCG, customer click-through rates, and human assessments, to validate the effectiveness of our approach. Our findings reveal that the system is not only scalable but also significantly reduces the human workload involved in creating product descriptions. This study underscores the considerable potential of large language models like LLAMA 2.0 7B in automating and optimizing various facets of eCommerce platforms, offering significant business impact, including improved search functionality and increased sales.Comment: 9 pages, 4 figures, EMNLP2023 workshop, The 2023 Conference on Empirical Methods in Natural Language Processin

    Edge-Termination and Core-Modification Effects of Hexagonal Nanosheet Graphene

    Get PDF
    [[abstract]]Optimized geometries and electronic structures of two different hexagonal grapheme nanosheets (HGNSs), with armchair (n-A-HGNS, n = 3–11) and zigzag (n-Z-HGNS, n = 1–8) edges have been calculated by using the GGA/PBE method implemented in the SIESTA package, with the DZP basis set, where n represents the number of peripheral rings. The computed HOMO-LUMO energy gap (Eg = ELUMO − EHOMO) decreases for fully H-terminated A- and Z-HGNSs with increasing n, i.e., with increasing nanosheet size and pπ-orbitals being widely delocalized over the sheet surface. The full terminations, calculated with various functional groups, including the electron-withdrawing (F-, Cl-, and CN-) and -donating (OH-, and SH-) substitutions, were addressed. Significant lowering of EHOMO and ELUMO was obtained for CN-terminated HGNS as compared to those for H-terminated ones due to the mesomeric effect. The calculated Eg value decreases with increasing n for all terminations, whereby for the SH-termination in HGNS, the termination effect becomes less significant with increasing n. Further, the calculation results for stabilities of HGNS oxides support the tendency toward the oxidative reactivity at the edge site of the sheet, which shows most pronounced C-C bond length alternation, by chemical modification. Physical properties of HGNSs with various numbers of the core-defects, which can be obtained by strong oxidation, were also investigated. Their structures can change drastically from planar to saddle-like shapes. These conformations could be used as stationary phases with controlled interaction in the separation methods such as HPLC and the other chemical analysis techniques.[[notice]]èŁœæ­ŁćźŒç•ą[[incitationindex]]SCI[[booktype]]電歐

    Ontogeny of Human IgE-expressing B Cells and Plasma Cells

    Get PDF
    BACKGROUND: IgE‐expressing (IgE(+)) plasma cells (PCs) provide a continuous source of allergen‐specific IgE that is central to allergic responses. The extreme sparsity of IgE(+) cells in vivo has confined their study almost entirely to mouse models. OBJECTIVE: To characterize the development pathway of human IgE(+) PCs and to determine the ontogeny of human IgE(+) PCs. METHODS: To generate human IgE(+) cells, we cultured tonsil B cells with IL‐4 and anti‐CD40. Using FACS and RT‐PCR, we examined the phenotype of generated IgE(+) cells, the capacity of tonsil B‐cell subsets to generate IgE(+) PCs and the class switching pathways involved. RESULTS: We have identified three phenotypic stages of IgE(+) PC development pathway, namely (i) IgE(+)germinal centre (GC)‐like B cells, (ii) IgE(+) PC‐like ‘plasmablasts’ and (iii) IgE(+) PCs. The same phenotypic stages were also observed for IgG1(+) cells. Total tonsil B cells give rise to IgE(+) PCs by direct and sequential switching, whereas the isolated GC B‐cell fraction, the main source of IgE(+) PCs, generates IgE(+) PCs by sequential switching. PC differentiation of IgE(+) cells is accompanied by the down‐regulation of surface expression of the short form of membrane IgE (mIgE(S)), which is homologous to mouse mIgE, and the up‐regulation of the long form of mIgE (mIgE(L)), which is associated with an enhanced B‐cell survival and expressed in humans, but not in mice. CONCLUSION: Generation of IgE(+) PCs from tonsil GC B cells occurs mainly via sequential switching from IgG. The mIgE(L)/mIgE(S) ratio may be implicated in survival of IgE(+) B cells during PC differentiation and allergic disease

    Reliability of flexible low temperature poly-silicon thin film transistor

    Get PDF
    This work reports the effect of mechanical stress-induced degradation in flexible low-temperature polycrystalline-silicon thin-film transistors. After 100,000 iterations of channel-width-direction mechanical compression at R=2mm, a significant shift of extracted threshold voltage and an abnormal hump at the subthreshold region were found. Simulation reveals that both the strongest mechanical stress and electrical field takes place at both sides of the channel edge, between the polycrystalline silicon and gate insulator. The gate insulator suffered from a serious mechanical stress and result in a defect generation in the gate insulator. The degradation of the threshold voltage shift and the abnormal hump can be ascribed to the electron trapping in these defects. In addition, this work introduced three methods to reduce the degradation cause by the mechanical stress, including the quality improvement of the gate insulator, organic trench structure and active layer with a wing structure. Please click Additional Files below to see the full abstract
    • 

    corecore