51 research outputs found

    Evidence of a low-temperature dynamical transition in concentrated microgels

    Get PDF
    A low-temperature dynamical transition has been reported in several proteins. We provide the first observation of a `protein-like' dynamical transition in nonbiological aqueous environments. To this aim we exploit the popular colloidal system of poly-N-isopropylacrylamide (PNIPAM) microgels, extending their investigation to unprecedentedly high concentrations. Owing to the heterogeneous architecture of the microgels, water crystallization is avoided in concentrated samples, allowing us to monitor atomic dynamics at low temperatures. By elastic incoherent neutron scattering and molecular dynamics simulations, we find that a dynamical transition occurs at a temperature Td250T_d\sim250~K, independently from PNIPAM mass fraction. However, the transition is smeared out on approaching dry conditions. The quantitative agreement between experiments and simulations provides evidence that the transition occurs simultaneously for PNIPAM and water dynamics. The similarity of these results with hydrated protein powders suggests that the dynamical transition is a generic feature in complex macromolecular systems, independently from their biological function

    Water-polymer coupling induces a dynamical transition in microgels

    Full text link
    The long debated protein dynamical transition was recently found also in non-biological macromolecules, such as poly-N-isopropylacrylamide (PNIPAM) microgels. Here, by using atomistic molecular dynamics simulations, we report a description of the molecular origin of the dynamical transition in these systems. We show that PNIPAM and water dynamics below the dynamical transition temperature Td are dominated by methyl group rotations and hydrogen bonding, respectively. By comparing with bulk water, we unambiguously identify PNIPAM-water hydrogen bonding as the main responsible for the occurrence of the transition. The observed phenomenology thus crucially depends on the water-macromolecule coupling, being relevant to a wide class of hydrated systems, independently from the biological function

    Assembling patchy plasmonic nanoparticles with aggregation-dependent antibacterial activity

    Full text link
    We realise an antibacterial nanomaterial based on the self-limited assembly of patchy plasmonic colloids, obtained by adsorption of lysozyme to gold nanoparticles. The possibility of selecting the size of the assemblies within several hundred nanometres allows for tuning their optical response in a wide range of frequencies from visible to near infrared. We also demonstrate an aggregation-dependent modulation of the catalytic activity, which results in an enhancement of the antibacterial performances for assemblies of the proper size. The gained overall control on structure, optical properties and biological activity of such nanomaterial paves the way for the development of novel antibacterial nanozymes with promising applications in treating multi drug resistant bacteria

    Molecular origin of the two-step mechanism of gellan aggregation

    Get PDF
    Among hydrocolloids, gellan is one of the most studied polysaccharides due to its ability to form mechanically stable gels. Despite its long-standing use, the gellan aggregation mechanism is still not understood because of the lack of atomistic information. Here, we fill this gap by developing a new gellan force field. Our simulations offer the first microscopic overview of gellan aggregation, detecting the coil to single-helix transition at dilute conditions and the formation of higher-order aggregates at high concentration through a two-step process: first, the formation of double helices and then their assembly into superstructures. For both steps, we also assess the role of monovalent and divalent cations, complementing simulations with rheology and atomic force microscopy experiments and highlighting the leading role of divalent cations. These results pave the way for future use of gellan-based systems in a variety of applications, from food science to art restoration
    corecore