3,495 research outputs found
Local temperature-sensitive mechanisms are important mediators of limb tissue hyperemia in the heat-stressed human at rest and during small muscle mass exercise.
Limb tissue and systemic blood flow increases with heat stress, but the underlying mechanisms remain poorly understood. Here, we tested the hypothesis that heat stress-induced increases in limb tissue perfusion are primarily mediated by local temperature-sensitive mechanisms. Leg and systemic temperatures and hemodynamics were measured at rest and during incremental single-legged knee extensor exercise in 15 males exposed to 1 h of either systemic passive heat-stress with simultaneous cooling of a single leg (n=8) or isolated leg heating or cooling (n=7). Systemic heat-stress increased core, skin and heated leg blood (Tb) temperatures, cardiac output and heated leg blood flow (LBF, 0.6 ± 0.1 l.min(-1); P0.05). Increased heated leg deep tissue BF was closely related to Tb (R(2) = 0.50; P0.05), despite unchanged systemic temperatures and hemodynamics. During incremental exercise, heated LBF was consistently maintained ~ 0.6 l.min(-1) higher than that in the cooled leg (P<0.01), with LBF and vascular conductance in both legs showing a strong correlation with their respective local Tb (R(2) = 0.85 and 0.95, P<0.05). We conclude that local temperature-sensitive mechanisms are important mediators in limb tissue perfusion regulation both at rest and during small-muscle mass exercise in hyperthermic humans.The invasive study was partially funded by Gatorade Sports Science Institute, PepsiCo
O-17 Hyperfine Spectroscopy Reveals Hydration Structure of Nitroxide Radicals in Aqueous Solutions
The hydrationstructureof nitroxideradicalsin aqueoussolutionsis elucidatedby advanced17Ohyperfine(hf) spectroscopywith supportof quantumchemicalcalculationsand MD simulations.A piperidineand a pyrrolidine-basednitroxideradical are comparedand show clear differencesin the preferreddirectionalityof H-bondformation.We demonstratethat thesescenariosare best representedin17O hf spectra,wherein-planecoordinationovers-type H-bondingleads tolittle spin densitytransferon the water oxygenand smallhf couplings,whereasp-type perpendicularcoordinationgeneratesmuch larger hf couplings.Quantitativeanaly-sis of the spectrabased on MD simulationsand DFTpredictedhf parametersis consistentwith a distributionof close solvatingwater molecules,in which direction-ality is influencedby subtle steric effects of the ring andthe methyl group substituents
Radiofrequency to Microwave Coherent Manipulation of an Organometallic Electronic Spin Qubit Coupled to a Nuclear Qudit
[Image: see text] We report here a comprehensive characterization of a 3d organometallic complex, [V(Cp)(2)Cl(2)] (Cp = cyclopentadienyl), which can be considered as a prototypical multilevel nuclear qudit (nuclear spin I = 7/2) hyperfine coupled to an electronic qubit (electronic spin S = 1/2). By combining complementary magnetic resonant techniques, such as pulsed electron paramagnetic resonance (EPR) and broadband nuclear magnetic resonance (NMR), we extensively characterize its Spin Hamiltonian parameters and its electronic and nuclear spin dynamics. Moreover, we demonstrate the possibility to manipulate the qubit–qudit multilevel structure by resonant microwave and radiofrequency pulses, driving coherent Rabi oscillations between targeted electronuclear states. The obtained results demonstrate that this simple complex is a promising candidate for quantum computing applications
Radiofrequency to Microwave Coherent Manipulation of an Organometallic Electronic Spin Qubit Coupled to a Nuclear Qudit
We report here a comprehensive characterization of a 3d organometallic complex, [V(Cp)2Cl2] (Cp = cyclopentadienyl), which can be considered as a prototypical multilevel nuclear qudit (nuclear spin I = 7/2) hyperfine coupled to an electronic qubit (electronic spin S = 1/2). By combining complementary magnetic resonant techniques, such as pulsed electron paramagnetic resonance (EPR) and broadband nuclear magnetic resonance (NMR), we extensively characterize its Spin Hamiltonian parameters and its electronic and nuclear spin dynamics. Moreover, we demonstrate the possibility to manipulate the qubit-qudit multilevel structure by resonant microwave and radiofrequency pulses, driving coherent Rabi oscillations between targeted electronuclear states. The obtained results demonstrate that this simple complex is a promising candidate for quantum computing applications
Quantum error correction with molecular spin qudits
Thanks to the large number of levels which can be coherently manipulated, molecular spin systems constitute a very promising platform for quantum computing. Indeed, they can embed quantum error correction within single molecular objects, thus greatly simplifying its actual realization in the short term. We consider a recent proposal, which exploits a spin qudit to encode the protected unit, and is tailored to fight pure dephasing. Here we compare the implementation of this code on different molecules, in which the qudit is provided by either an electronic or a nuclear spin (S, I > 1), coupled to a spin-1/2 electronic ancilla for error detection. By thorough numerical simulations we show that a significant gain in the effective phase memory time can be achieved. This is further enhanced by exploiting pulse-shaping techniques to reduce the leakage and/or the impact of decoherence during correction. Moreover, we simulate the implementation of single-qubit operations on the encoded states
On the Effectiveness of BGP Hijackers That Evade Public Route Collectors
Routing hijack attacks have plagued the Internet for decades. After many failed mitigation attempts, recent Internet-wide BGP monitoring infrastructures relying on distributed route collection systems, called route collectors, give us hope that future monitor systems can quickly detect and ultimately mitigate hijacks. In this paper, we investigate the effectiveness of public route collectors with respect to future attackers deliberately engineering longer hijacks to avoid being recorded by route collectors. Our extensive simulations (and attacks we device) show that monitor-based systems may be unable to observe many carefully crafted hijacks diverting traffic from thousands of ASes. Hijackers could predict whether their attacks would propagate to some BGP feeders (i.e., monitors) of public route collectors. Then, manipulate BGP route propagation so that the attack never reaches those monitors. This observation remains true when considering plausible future Internet topologies, with more IXP links and up to 4 times more monitors peering with route collectors. We then evaluate the feasibility of performing hijacks not observed by route collectors in the real-world. We experiment with two classifiers to predict the monitors that are dangerous to report the attack to route collectors, one based on monitor proximities (i.e., shortest path lengths) and another based on Gao-Rexford routing policies. We show that a proximity-based classifier could be sufficient for the hijacker to identify all dangerous monitors for hijacks announced to peer-to-peer neighbors. For hijacks announced to transit networks, a Gao-Rexford classifier reduces wrong inferences by without introducing new misclassifications for existing dangerous monitors
Transaxillary Tri-Branch Aortic Endovascular Graft Repair of Recurrent Thoracoabdominal Aneurysm With Pararenal Aortic Occlusion
The absence of an adequate ileo-femoral access is usually considered an absolute contraindication to fenestrated and branched aortic repairs. Alternative routes and dedicated stent-graft designs have been advocated. Hereby, we describe the case of a 73-year-old man with a recurrent type IV thoracoabdominal aortic aneurysm and complete thrombotic pararenal aortic occlusion treated successfully with a tri-branch custom-made endograft deployed via a transaxillary access
- …