7,350 research outputs found
Antisymmetric magnetoresistance in magnetic multilayers with perpendicular anisotropy
While magnetoresistance (MR) has generally been found to be symmetric in
applied field in non-magnetic or magnetic metals, we have observed
antisymmetric MR in Co/Pt multilayers. Simultaneous domain imaging and
transport measurements show that the antisymmetric MR is due to the appearance
of domain walls that run perpendicular to both the magnetization and the
current, a geometry existing only in materials with perpendicular magnetic
anisotropy. As a result, the extraordinary Hall effect (EHE) gives rise to
circulating currents in the vicinity of the domain walls that contributes to
the MR. The antisymmetric MR and EHE have been quantitatively accounted for by
a theoretical model.Comment: 17 pages, 4 figure
Multilevel semantic analysis and problem-solving in the flight domain
A computer based cockpit system which is capable of assisting the pilot in such important tasks as monitoring, diagnosis, and trend analysis was developed. The system is properly organized and is endowed with a knowledge base so that it enhances the pilot's control over the aircraft while simultaneously reducing his workload
Laminar flow of two miscible fluids in a simple network
When a fluid comprised of multiple phases or constituents flows through a
network, non-linear phenomena such as multiple stable equilibrium states and
spontaneous oscillations can occur. Such behavior has been observed or
predicted in a number of networks including the flow of blood through the
microcirculation, the flow of picoliter droplets through microfluidic devices,
the flow of magma through lava tubes, and two-phase flow in refrigeration
systems. While the existence of non-linear phenomena in a network with many
inter-connections containing fluids with complex rheology may seem
unsurprising, this paper demonstrates that even simple networks containing
Newtonian fluids in laminar flow can demonstrate multiple equilibria.
The paper describes a theoretical and experimental investigation of the
laminar flow of two miscible Newtonian fluids of different density and
viscosity through a simple network. The fluids stratify due to gravity and
remain as nearly distinct phases with some mixing occurring only by diffusion.
This fluid system has the advantage that it is easily controlled and modeled,
yet contains the key ingredients for network non-linearities. Experiments and
3D simulations are first used to explore how phases distribute at a single
T-junction. Once the phase separation at a single junction is known, a network
model is developed which predicts multiple equilibria in the simplest of
networks. The existence of multiple stable equilibria is confirmed
experimentally and a criteria for their existence is developed. The network
results are generic and could be applied to or found in different physical
systems
Lensed Quasar Hosts
Gravitational lensing assists in the detection of quasar hosts by amplifying
and distorting the host light away from the unresolved quasar core images. We
present the results of HST observations of 30 quasar hosts at redshifts 1 < z <
4.5. The hosts are small in size (r_e <~ 6 kpc), and span a range of
morphologies consistent with early-types (though smaller in mass) to
disky/late-type. The ratio of the black hole mass (MBH, from the virial
technique) to the bulge mass (M_bulge, from the stellar luminosity) at 1<z<1.7
is broadly consistent with the local value; while MBH/M_bulge at z>1.7 is a
factor of 3--6 higher than the local value. But, depending on the stellar
content the ratio may decline at z>4 (if E/S0-like), flatten off to 6--10 times
the local value (if Sbc-like), or continue to rise (if Im-like). We infer that
galaxy bulge masses must have grown by a factor of 3--6 over the redshift range
3>z>1, and then changed little since z~1. This suggests that the peak epoch of
galaxy formation for massive galaxies is above z~1. We also estimate the duty
cycle of luminous AGNs at z>1 to be ~1%, or 10^7 yrs, with sizable scatter.Comment: 8 pages, 6 figures, review article with C. Impey at the conference on
"QSO Host Galaxies: Evolution and Environment", Aug. 29-Sep. 2, 2005, Lorentz
Center, Leiden, The Netherland
The Environments of Supernovae in Post-Refurbishment Hubble Space Telescope Images
The locations of supernovae in the local stellar and gaseous environment in
galaxies contain important clues to their progenitor stars. Access to this
information, however, has been hampered by the limited resolution achieved by
ground-based observations. High spatial resolution Hubble Space Telescope (HST)
images of galaxy fields in which supernovae had been observed can improve the
situation considerably. We have examined the immediate environments of a few
dozen supernovae using archival post-refurbishment HST images. Although our
analysis is limited due to signal-to-noise ratio and filter bandpass
considerations, the images allow us for the first time to resolve individual
stars in, and to derive detailed color-magnitude diagrams for, several
environments. We are able to place more rigorous constraints on the masses of
these supernovae. A search was made for late-time emission from supernovae in
the archival images, and for the progenitor stars in presupernova images of the
host galaxies. We have detected SN 1986J in NGC 891 and, possibly, SN 1981K in
NGC 4258. We have also identified the progenitor of the Type IIn SN 1997bs in
NGC 3627. By removing younger resolved stars in the environments of SNe Ia, we
can measure the colors of the unresolved stellar background and attribute these
colors generally to an older, redder population. HST images ``accidentally''
caught the Type Ia SN 1994D in NGC 4526 shortly after its outburst; we measure
its brightness. Finally, we add to the statistical inferences that can be made
from studying the association of SNe with recent star-forming regions.Comment: 20 pages, 29 figures, to appear in A
Hubble Space Telescope WFPC2 Imaging of SN 1979C and Its Environment
The locations of supernovae in the local stellar and gaseous environment in
galaxies contain important clues to their progenitor stars. As part of a
program to study the environments of supernovae using Hubble Space Telescope
(HST) imaging data, we have examined the environment of the Type II-L SN 1979C
in NGC 4321 (M100). We place more rigorous constraints on the mass of the SN
progenitor, which may have had a mass M \approx 17--18 M_sun. Moreover, we have
recovered and measured the brightness of SN 1979C, m=23.37 in F439W (~B;
m_B(max) = 11.6), 17 years after explosion. .Comment: 18 pages, 8 figures, submitted to PAS
Insights on quorum-quenching properties of Lysinibacillus fusiformis strain RB21, a Malaysian municipal solid-waste landfill soil isolate, via complete genome sequence analysis
YesLysinibacillus fusiformis strain RB21 is a quorum-quenching bacterium that is able to degrade quorum-sensing signaling molecules. Here, we present the first complete genome sequence of L. fusiformis strain RB21. The finished genome is 4.8 Mbp in size, and the quorum-quenching gene was identified.University of Malaya for High Impact Research (UM-MOHE HIR) grant UM C/625/1/HIR/MOHE/CHAN/01, no. A000001-50001 and grant UM C/625/1/HIR/MOHE/CHAN/14/1, H-50001-A00002
Infrared Hall effect in high Tc superconductors: Evidence for non-Fermi liquid Hall scattering
Infrared (20-120 cm-1 and 900-1100 cm-1) Faraday rotation and circular
dichroism are measured in high Tc superconductors using sensitive polarization
modulation techniques. Optimally doped YBCO thin films are studied at
temperatures down to 15 K and magnetic fields up to 8 T. At 1000 cm-1 the Hall
conductivity varies strongly with temperature in contrast to the longitudinal
conductivity which is nearly independent of temperature. The Hall scattering
rate has a T^2 temperature dependence but, unlike a Fermi liquid, depends only
weakly on frequency. The experiment puts severe constraints on theories of
transport in the normal state of high Tc superconductors.Comment: 8 pages, 3 figure
- …