1,832 research outputs found

    Chapter 1 : The impact of modernization on the basic functions of traditional Vietnamese family

    Get PDF
    2016年度調査研究報告

    Reclamation of Marine Chitinous Materials for Chitosanase Production via Microbial Conversion by Paenibacillus macerans

    Get PDF
    [[abstract]]: Chitinous materials from marine byproducts elicit great interest among biotechnologists for their potential biomedical or agricultural applications. In this study, four kinds of marine chitinous materials (squid pens, shrimp heads, demineralized shrimp shells, and demineralized crab shells) were used to screen the best source for producing chitosanase by Paenibacillus macerans TKU029. Among them, the chitosanase activity was found to be highest in the culture using the medium containing squid pens as the sole carbon/nitrogen (C/N) source. A chitosanase which showed molecular weights at 63 kDa was isolated from P. macerans cultured on a squid pens medium. The purified TKU029 chitosanase exhibited optimum activity at 60 ◦C and pH 7, and was stable at temperatures under 50 ◦C and pH 3-8. An analysis by MALDI-TOF MS revealed that the chitosan oligosaccharides (COS) obtained from the hydrolysis of water-soluble chitosan by TKU029 crude enzyme showed various degrees of polymerization (DP), varying from 3–6. The obtained COS enhanced the growth of four lactic acid bacteria strains but exhibited no effect on the growth of E. coli. By specialized growth enhancing effects, the COS produced from hydrolyzing water soluble chitosan with TKU029 chitinolytic enzymes could have potential for use in medicine or nutraceuticals.[[sponsorship]]MOST[[notice]]補正完

    SOME ARTISTIC SIMILARITIES BETWEEN THE XO DANG EPIC AND THE BAHNAR EPIC

    Get PDF
    The epics told by two ethnic groups, the Xo Dang and the Bahnar, belong to the Central Highlands epic region and have similarities in content and form. This article introduces some basic general features of the Xo Dang and Bahnar epics in terms of theme, plotline, and characterization, and analyzes the cause and meaning of the similarities. We use comparative, interdisciplinary research methods to clarify the similarities in the epic art of the two ethnic groups, thereby showing the unity in the diversity of the epic region of the Central Highlands.The epics told by two ethnic groups, the Xo Dang and the Bahnar, belong to the Central Highlands epic region and have similarities in content and form. This article introduces some basic general features of the Xo Dang and Bahnar epics in terms of theme, plotline, and characterization, and analyzes the cause and meaning of the similarities. We use comparative, interdisciplinary research methods to clarify the similarities in the epic art of the two ethnic groups, thereby showing the unity in the diversity of the epic region of the Central Highlands

    The role of information technology in STEM education

    Get PDF
    The ubiquity of IT (Information technology) for teaching at large is a reality that can be observed, including STEM education, which is the field of study of this research. In view of this situation, this work is intended to determine the role of IT in STEM (Science, Technology, Engineering, Mathematics) education. It was decided to conduct a systematic review based on PRISMA model and adding information obtained from the analysis of fugitive literature. The literature review was carried out on a total of 16 articles. The main inclusion criteria were a temporal selection from 2015 to March 2023, the inclusion of the terms IT and STEM in the title, abstract or keywords of the articles. The main results show an increasing tendency of this topic, especially in English research. Most relevant conclusions of the systematic review evidence a positive relationship between IT and STEM education, although some negative aspects are also highlighted as there is still a lack of resources and teacher training, leading to ineffective application of IT in STEM classes. The research results have important practical implications, it motivates teachers to research, propose and implement measures to enhance the role of IT in STEM education, while minimizing the limitations that have been identified

    Enzymatic Cross-Linking of Dynamic Thiol-Norbornene Click Hydrogels

    Get PDF
    Enzyme-mediated in situ forming hydrogels are attractive for many biomedical applications because gelation afforded by enzymatic reactions can be readily controlled not only by tuning macromer compositions, but also by adjusting enzyme kinetics. For example, horseradish peroxidase (HRP) has been used extensively for in situ cross-linking of macromers containing hydroxyl-phenol groups. The use of HRP to initiate thiol-allylether polymerization has also been reported, yet no prior study has demonstrated enzymatic initiation of thiol-norbornene gelation. In this study, we discovered that HRP can generate the thiyl radicals needed for initiating thiol-norbornene hydrogelation, which has only been demonstrated previously using photopolymerization. Enzymatic thiol-norbornene gelation not only overcomes light attenuation issue commonly observed in photopolymerized hydrogels, but also preserves modularity of the cross-linking. In particular, we prepared modular hydrogels from two sets of norbornene-modified macromers, 8-arm poly(ethylene glycol)-norbornene (PEG8NB) and gelatin-norbornene (GelNB). Bis-cysteine-containing peptides or PEG-tetra-thiol (PEG4SH) was used as a cross-linker for forming enzymatically and orthogonally polymerized hydrogel. For HRP-initiated PEG-peptide hydrogel cross-linking, gelation efficiency was significantly improved via adding tyrosine residues on the peptide cross-linkers. Interestingly, these additional tyrosine residues did not form permanent dityrosine cross-links following HRP-induced gelation. As a result, they remained available for tyrosinase-mediated secondary cross-linking, which dynamically increased hydrogel stiffness. In addition to material characterizations, we also found that both PEG- and gelatin-based hydrogels exhibited excellent cytocompatibility for dynamic 3D cell culture. The enzymatic thiol-norbornene gelation scheme presented here offers a new cross-linking mechanism for preparing modularly and dynamically cross-linked hydrogels

    An exact theory of interfacial debonding in layered elastic composites

    Get PDF
    AbstractAn exact theory of interfacial debonding is developed for a layered composite system consisting of distinct linear elastic slabs separated by nonlinear, nonuniform decohesive interfaces. Loading of the top and bottom external surfaces is defined pointwise while loading of the side surfaces is prescribed in the form of resultants. The work is motivated by the desire to develop a general tool to analyze the detailed features of debonding along uniform and nonuniform straight interfaces in slab systems subject to general loading. The methodology allows for the investigation of both solitary defect as well as multiple defect interaction problems. Interfacial integral equations, governing the normal and tangential displacement jump components at an interface of a slab system are developed from the Fourier series solution for the single slab subject to arbitrary loading on its surfaces. Interfaces are characterized by distinct interface force–displacement jump relations with crack-like defects modeled by an interface strength which varies with interface coordinate. Infinitesimal strain equilibrium solutions, which account for rigid body translation and rotation, are sought by eigenfunction expansion of the solution of the governing interfacial integral equations. Applications of the theory to the bilayer problem with a solitary defect or a defect pair, in both peeling and mixed load configurations are presented

    Recent Advances in BiVO4- and Bi2Te3-Based Materials for High Efficiency-Energy Applications

    Get PDF
    This chapter provides recent progress in developments of BiVO4- and Bi2Te3-based materials for high efficiency photoelectrodes and thermoelectric applications. The self-assembling nanostructured BiVO4-based materials and their heterostructures (e.g., WO3/BiVO4) are developed and studied toward high efficiency photoelectrochemical (PEC) water splitting via engineering the crystal and band structures and charge transfer processes across the heteroconjunctions. In addition, crystal and electronic structures, optical properties, and strategies to enhance photoelectrochemical properties of BiVO4 are presented. The nanocrystalline, nanostructured Bi2Te3-based thin films with controlled structure, and morphology for enhanced thermoelectric properties are also reported and discussed in details. We demonstrate that BiVO4-based materials and Bi2Te3-based thin films play significant roles for the developing renewable energy
    corecore