603 research outputs found
Expression of a beta-adrenergic receptor kinase 1 inhibitor prevents the development of myocardial failure in gene-targeted mice.
Heart failure is accompanied by severely impaired beta-adrenergic receptor (betaAR) function, which includes loss of betaAR density and functional uncoupling of remaining receptors. An important mechanism for the rapid desensitization of betaAR function is agonist-stimulated receptor phosphorylation by the betaAR kinase (betaARK1), an enzyme known to be elevated in failing human heart tissue. To investigate whether alterations in betaAR function contribute to the development of myocardial failure, transgenic mice with cardiac-restricted overexpression of either a peptide inhibitor of betaARK1 or the beta2AR were mated into a genetic model of murine heart failure (MLP-/-). In vivo cardiac function was assessed by echocardiography and cardiac catheterization. Both MLP-/- and MLP-/-/beta2AR mice had enlarged left ventricular (LV) chambers with significantly reduced fractional shortening and mean velocity of circumferential fiber shortening. In contrast, MLP-/-/betaARKct mice had normal LV chamber size and function. Basal LV contractility in the MLP-/-/betaARKct mice, as measured by LV dP/dtmax, was increased significantly compared with the MLP-/- mice but less than controls. Importantly, heightened betaAR desensitization in the MLP-/- mice, measured in vivo (responsiveness to isoproterenol) and in vitro (isoproterenol-stimulated membrane adenylyl cyclase activity), was completely reversed with overexpression of the betaARK1 inhibitor. We report here the striking finding that overexpression of this inhibitor prevents the development of cardiomyopathy in this murine model of heart failure. These findings implicate abnormal betaAR-G protein coupling in the pathogenesis of the failing heart and point the way toward development of agents to inhibit betaARK1 as a novel mode of therapy
Dielectric properties characterization of La- and Dy-doped BiFeO3 thin films
The dielectric response of La- and Dy- doped BiFeO3 thin films at microwave frequencies (up to 12 GHz) has been monitored as a function of frequency, direct current (dc) electric field, and magnetic field in a temperature range from 25 to 300 Β°C. Both the real and imaginary parts of the response have been found to be non-monotonic (oscillating) functions of measuring frequency. These oscillations are not particularly sensitive to a dc electric field; however, they are substantially dampened by a magnetic field. The same effect has been observed when the volume of the characterized sample is increased. This phenomenon is attributed to the presence of a limited number of structural features with a resonance type response. The exact origin of these features is unknown at present. Leakage current investigations were performed on the whole set of films. The films were highly resistive with low leakage current, thereby giving us confidence in the microwave measurements. These typically revealed βN'-type I-V characteristic
Amelioration of bleomycin-induced lung fibrosis in hamsters by dietary supplementation with taurine and niacin: biochemical mechanisms.
Interstitial pulmonary fibrosis induced by intratracheal instillation of bleomycin (BL) involves an excess production of reactive oxygen species, unavailability of adequate levels of NAD and ATP to repair the injured pulmonary epithelium, and an overexuberant lung collagen reactivity followed by deposition of highly cross-linked mature collagen fibrils resistant to enzymatic degradation. In the present study, we have demonstrated that dietary supplementation with taurine and niacin offered almost complete protection against the lung fibrosis in a multidose BL hamster model. The mechanisms for the protective effect of taurine and niacin are multifaceted. These include the ability of taurine to scavenge HOCl and stabilize the biomembrane; niacin's ability to replenish the BL-induced depletion of NAD and ATP; and the combined effect of taurine and niacin to suppress all aspects of BL-induced increases in the lung collagen reactivity, a hallmark of interstitial pulmonary fibrosis. It was concluded from the data presented at this Conference that the combined treatment with taurine and niacin, which offers a multipronged approach, will have great therapeutic potential in the intervention of the development of chemically induced interstitial lung fibrosis in animals and humans
Systematic review of communication technologies to promote access and engagement of young people with diabetes into healthcare
Background: Research has investigated whether communication technologies (e.g. mobile telephony, forums,
email) can be used to transfer digital information between healthcare professionals and young people who live
with diabetes. The systematic review evaluates the effectiveness and impact of these technologies on
communication.
Methods: Nine electronic databases were searched. Technologies were described and a narrative synthesis of all
studies was undertaken.
Results: Of 20,925 publications identified, 19 met the inclusion criteria, with 18 technologies assessed. Five
categories of communication technologies were identified: video-and tele-conferencing (n = 2); mobile telephony
(n = 3); telephone support (n = 3); novel electronic communication devices for transferring clinical information (n =
10); and web-based discussion boards (n = 1). Ten studies showed a positive improvement in HbA1c following the
intervention with four studies reporting detrimental increases in HbA1c levels. In fifteen studies communication
technologies increased the frequency of contact between patient and healthcare professional. Findings were
inconsistent of an association between improvements in HbA1c and increased contact. Limited evidence was
available concerning behavioural and care coordination outcomes, although improvement in quality of life, patientcaregiver
interaction, self-care and metabolic transmission were reported for some communication technologies.
Conclusions: The breadth of study design and types of technologies reported make the magnitude of benefit and
their effects on health difficult to determine. While communication technologies may increase the frequency of
contact between patient and health care professional, it remains unclear whether this results in improved
outcomes and is often the basis of the intervention itself. Further research is needed to explore the effectiveness
and cost effectiveness of increasing the use of communication technologies between young people and
healthcare professionals
Clinical characteristics of ovarian cancer classified by BRCA1, BRCA2, and RAD51C status.
We evaluated homologous recombination deficient (HRD) phenotypes in epithelial ovarian cancer (EOC) considering BRCA1, BRCA2, and RAD51C in a large well-annotated patient set. We evaluated EOC patients for germline deleterious mutations (n = 899), somatic mutations (n = 279) and epigenetic alterations (n = 482) in these genes using NGS and genome-wide methylation arrays. Deleterious germline mutations were identified in 32 (3.6%) patients for BRCA1, in 28 (3.1%) for BRCA2 and in 26 (2.9%) for RAD51C. Ten somatically sequenced patients had deleterious alterations, six (2.1%) in BRCA1 and four (1.4%) in BRCA2. Fifty two patients (10.8%) had methylated BRCA1 or RAD51C. HRD patients with germline or somatic alterations in any gene were more likely to be high grade serous, have an earlier diagnosis age and have ovarian and/or breast cancer family history. The HRD phenotype was most common in high grade serous EOC. Identification of EOC patients with an HRD phenotype may help tailor specific therapies.This work was supported by National Institutes of Health grants R01-CA122443, P50-CA136393, P30-CA15083, and the Fred C. and Katherine B. Andersen Foundation. We thank Gary Kenney, M.D. for pathology review of tumor tissue. We thank Craig Luccarini, Caroline Baynes from University of Cambridge for assisting our sample sequencing
Combinatorial experimental protocols for Erbicin-derived immunoagents and Herceptin
Erbicin is a human anti-ErbB2 single-chain antibody fragment with high affinity and selectivity for ErbB2-positive cancer cells. Two anti-ErbB2 immunoconjugates, called Erb-hRNase and Erb-hcAb, have been prepared and found to be selectively cytotoxic on ErbB2-positive cancer cells in vitro and vivo. In Erb-hRNase, Erbicin is linked to a human RNase and in Erb-hcAb it is linked to the key structural and functional regions of a human IgG. Herceptin is an anti-ErbB2 humanised antibody successfully used in the immunotherapy of breast cancer. We report here that the Erbicin-derived immunoagents target on breast cancer cells an ErbB2 epitope different than that of Herceptin. This finding led us to verify the effects of Herceptin on breast cancer cells when it was used in combination with the Erbicin-derived immunoagents. The results indicated that in combination experiments the antitumour action of Herceptin and that of the novel agents were significantly increased in an additive fashion. An inspection of the mechanism of action of Erb-hRNase or Erb-hcAb combined with Herceptin provided evidence that the antibody combinations engendered an increased downregulation of the ErbB2 receptor, and led to an enhanced apoptotic cell death
Influence of oral beclomethasone dipropionate on early non-infectious pulmonary outcomes after allogeneic hematopoietic cell transplantation: results from two randomized trials.
Early non-infectious pulmonary complications represent a significant cause of mortality after hematopoietic cell transplantation (HCT). We tested the hypothesis that oral beclomethasone dipropionate (BDP) is effective for preventing early non-infectious pulmonary complications after allogeneic HCT. We retrospectively reviewed the medical records of 120 patients, 60 in each treatment arm, to identify non-infectious and infectious pulmonary events and pulmonary function test results from all patients who participated in two randomized trials of oral BDP for treatment of acute gastrointestinal GVHD. 17-Beclomethasone monopropionate (17-BMP), the active metabolite of BDP, was evaluated in blood from the right atrium in four patients. Thirty-three of 42 (79%) placebo-treated patients experienced a decrease of the DL(CO) from pretransplant to day 80 after transplant, compared with 27 of 49 (55%) BDP-treated patients (P=0.02). In the first 200 days after randomization, there were no cases of non-infectious pulmonary complications in BDP-treated patients, vs four cases among placebo-treated patients (P=0.04). Levels of 17-BMP were detected in atrial blood at steady state. Delivery of a potent glucocorticoid such as 17-BMP to the pulmonary artery after oral dosing of BDP may be useful in modulating pulmonary inflammation and preventing the development of non-infectious pulmonary complications after allogeneic HCT.Bone Marrow Transplantation advance online publication, 29 June 2009; doi:10.1038/bmt.2009.129
Down-Regulation of HtrA1 Activates the Epithelial-Mesenchymal Transition and ATM DNA Damage Response Pathways
Expression of the serine protease HtrA1 is decreased or abrogated in a variety of human primary cancers, and higher levels of HtrA1 expression are directly related to better response to chemotherapeutics. However, the precise mechanisms leading to HtrA1 down regulation during malignant transformation are unclear. To investigate HtrA1 gene regulation in breast cancer, we characterized expression in primary breast tissues and seven human breast epithelial cell lines, including two non-tumorigenic cell lines. In human breast tissues, HtrA1 expression was prominent in normal ductal glands. In DCIS and in invasive cancers, HtrA1 expression was greatly reduced or lost entirely. HtrA1 staining was also reduced in all of the human breast cancer cell lines, compared with the normal tissue and non-tumorigenic cell line controls. Loss of HtrA1 gene expression was attributable primarily to epigenetic silencing mechanisms, with different mechanisms operative in the various cell lines. To mechanistically examine the functional consequences of HtrA1 loss, we stably reduced and/or overexpressed HtrA1 in the non-tumorigenic MCF10A cell line. Reduction of HtrA1 levels resulted in the epithelial-to-mesenchymal transition with acquisition of mesenchymal phenotypic characteristics, including increased growth rate, migration, and invasion, as well as expression of mesenchymal biomarkers. A concomitant decrease in expression of epithelial biomarkers and all microRNA 200 family members was also observed. Moreover, reduction of HtrA1 expression resulted in activation of the ATM and DNA damage response, whereas overexpression of HtrA1 prevented this activation. Collectively, these results suggest that HtrA1 may function as a tumor suppressor by controlling the epithelial-to-mesenchymal transition, and may function in chemotherapeutic responsiveness by mediating DNA damage response pathways
Anti-erbB2 treatment induces cardiotoxicity by interfering with cell survival pathways
INTRODUCTION: Cardiac dysfunction is among the serious side effects of therapy with recombinant humanized anti-erbB2 monoclonal antibody. The antibody blocks ErbB-2, a receptor tyrosine kinase and co-receptor for other members of the ErbB and epidermal growth factor families, which is over-expressed on the surface of many malignant cells. ErbB-2 and its ligands neuregulin and ErbB-3/ErbB-4 are involved in survival and growth of cardiomyocytes in both postnatal and adult hearts, and therefore the drug may interrupt the correct functioning of the ErbB-2 pathway. METHODS: The effect of the rat-anti-erbB2 monoclonal antibody B-10 was studied in spontaneously beating primary myocyte cultures from rat neonatal hearts. Gene expression was determined by RT-PCR (reverse transcription polymerase chain reaction) and by rat stress-specific microarray analysis, protein levels by Western blot, cell contractility by video motion analysis, calcium transients by the FURA fluorescent method, and apoptosis using the TUNEL (terminal uridine nick-end labelling) assay. RESULTS: B-10 treatment induces significant changes in expression of 24 out of 207 stress genes analyzed using the microarray technique. Protein levels of ErbB-2, ErbB-3, ErbB-4 and neuregulin decreased after 1 day. However, both transcription and protein levels of ErbB-4 and gp130 increased several fold. Calreticulin and calsequestrin were overexpressed after three days, inducing a decrease in calcium transients, thereby influencing cell contractility. Apoptosis was induced in 20% cells after 24 hours. CONCLUSION: Blocking ErbB-2 in cultured rat cardiomyocytes leads to changes that may influence the cell cycle and affects genes involved in heart functions. B-10 inhibits pro-survival pathways and reduces cellular contractility. Thus, it is conceivable that this process may impair the stress response of the heart
- β¦