15 research outputs found

    Promising Anti-Hepatitis C Virus Compounds from Natural Reseurcees

    Get PDF
    Hepatitis C virus (HCV) infection is a major worldwide problem, which involves approximately 170 million people. High morbidity of patients is caused by chronic infection, which leads to liver cirrhosis, hepatocellular carcinoma and other HCV-related diseases. The sustained virological response (SVR) has been markedly improved to be >90% by the current standard interferon (IFN)-free treatment regimens with a combination of direct-acting antiviral agents (DAAs) targeting the viral NS3 protease, NS5A multi-function protein and NS5B RNA-dependent RNA polymerase, compared with 50–70% of SVR rates achieved by the previous standard IFN-based treatment regimens with or without an NS3 protease inhibitor. However, the emergence of DAA-resistant HCV strains and the limited access to the DAAs due to their high cost could be major concerns. Also, the long-term prognosis of patients treated with DAAs, such as the possible development of hepatocellular carcinoma, still needs to be further evaluated. Natural resources are considered to be good candidates to develop anti-HCV agents. Here, we summarize anti-HCV compounds obtained from natural resources, including medicinal plant extracts, their isolated compounds and some of their derivatives that possess high antiviral potency against HC

    Aktivitas Sitotoksisitas Ekstrak Metanol Daun Sirsak (Annona muricata L.) terhadap Karsinoma Hepatoseluler Strain HUH7IT-1 Cell Line

    Get PDF
    ABSTRAKLatar Belakang: Karsinoma hepatoseluler (HCC) merupakan tumor ganas hati primer dengan prognosis pada umumnya dapat menyebabkan kematian. Studi awal penelitian antiviral hepatitis C pada tumbuhan Sirsak (Annona muricata L.) pada konsentrasi 20 μg/mL memperlihatkan toksisitas yang sangat tinggi terhadap Huh7it-1 cell line, yang diindikasi memiliki potensi anti kanker terhadap sel hati, sehingga penelitian ini bertujuan menguji beberapa konsentrasi lebih rendah pada ekstrak metanol daun Annona muricata L. (EMDAM) terhadap Karsinoma Hepatoseluler strain Huh7it-1 cell line.Metode: Sel diuji dengan konsentrasi 20, 10, 5, 2.5, 1.25, 0.6, 0.3 μg/mL selama 48 jam. Sitotoksisitas EMDAM terhadap Huh7it-1 dilihat dengan mikrokop inverted dan selanjutnya diukur dengan metode MTT [3-(4,5-dimethylthiazol-2-yl)-5(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium].Hasil: Hasil uji menunjukkan sel memperlihatkan bentuk tidak monolayer pada mikroskop inverted dengan sitotoksisitas hingga konsentrasi terendah pada 0.3 μg/mL mencapai 84,7%, sehingga konsentrasi 50% Sitotoksisitas (CC50) < 0.3 μg/mL.Simpulan: Hasil uji mengindikasi bahwa EMDAM memiliki potential terhadap aktivitas anti kanker hati. Studi lebih lanjut diperlukan untuk purifikasi untuk senyawa aktif sebagai antikanker atau target mekanisme terhadap aktivitas anti kanker hati.Kata kunci: Karsinoma Hepatoseluler, Huh7it-1, Sitotoksisitas, Annona muricataABSTRACTBackground: Hepatocellular carcinoma (HCC) is a malignant tumor of liver cells with prognosis can cause death within 2-3 months. Previous studies of Annona muricata L. on anti-HCV studies at concentrations of 20 μg / mL showed very high toxicity to Huh7it-1 cell line, it was indicated to have anti-cancer potential of liver cells, so this study tested the potency of anticancer activity extract methanol leaf Annona muricata L. (EMDAM) against Hepatocellular Carcinoma Huh7it-1 strain cell line with low dose.Methods: Cells were tested with concentrations of 20, 10, 5, 2.5, 1.25, 0.6, 0.3 μg / mL for 48 hours. The EMDAM cytotoxicity of Huh7it-1 was seen with an inverted microcomputer and then measured with MTT assay [3-(4,5-dimethylthiazol-2-yl)-5(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium].Results: The results showed that the cells presented non-monolayer form in an inverted microscope with cytotoxicity until the lowest concentration of 0.3 μg / mL reached 84.7%, thus concentrating 50% cytotoxicity (CC50) <0.3 μg / mL.Conclusion: The results indicate that EMDAM has the potential for anti-liver cancer activity. Further studies are needed for purification for active compounds as anticancer or target mechanisms against anti-liver cancer activity.Keywords: Hepatocellular carcinoma, Huh7it-1, Cytotoxicity, Annona muricat

    Anti-viral activity of Phyllanthus niruri against hepatitis C virus

    Get PDF
    Hepatitis C virus (HCV) infection is a global problem that causes liver disease and hepatocellular carcinoma. Although the current standard treatment provided a significant improvement on response rate with sustain virology response more than 90%, however, the high cost was remaining limited access to this therapy, resistance emergence and serious side effects which provide the necessities to find the new anti-HCV agents. The current study, we evaluated the ethanol extract of Phyllanthus niruri for its anti-HCV activities. Anti-HCV activity was determined by in vitro culture cells of Huh 7it. Anti-HCV activity of P. niruri extract revealed strong inhibition against HCV with IC50 values of 4.14 µg/mL and yield stronger activity in the entry step of the HCV life cycle. Moreover, the P. niruri extract enhanced anti-HCV activity of simeprevir (NS3 protease inhibitor) with increase the activity up to 4-fold compared to a single treatment of simeprevir. Docking analysis was performed to predict the interaction phyllanthin and hypophyllantin, known compounds of P. niruri against HCV receptor. Both of phyllantin and hypophyllantin were mediated a strong interaction with 4GAG, a protein that involved in entry step of HCV. These results suggested that the ethanol extract of P. niruri may be good candidates for the development of anti-HCV drugs

    Antiviral activities of curcuma genus against hepatitis C virus

    Get PDF
    Hepatitis C virus (HCV) infection is one of the major public health problems in the world. Even though the new agents are shown to increase the sustained virology response, however, there are still many people who cannot access the therapy due to the high cost. Moreover, the emergence of resistance and side effects presented the necessity to develop alternative treatment agents for HCV infection. Plants of the genus of curcuma are popular among traditional medicines in the world, including Indonesia. They have been used for many herb remedies and reported to possess many biological activities. Several plants from the curcuma genus were known as treatment agents in liver disease and jaundice. Our current study determines antiviral activities of Curcuma domestica, Curcuma xanthorrhiza, and Curcuma heyneana against HCV and further examines the mechanism of actions. Antiviral activity was performed by in vitro culture cells using Huh 7.5it cells and treated with the mixture of extract and virus JFH1. The effects of extracts in HCV life cycle were determined by mode of action analysis to examine the action of substances in the entry or post entry steps. The results revealed that ethanol extract of C. domestica, C. xanthorrhiza, and C. heyneana showed strong anti-HCV activities with IC50 values of 1.68 ± 0.05, 4.93 ± 0.42 and 5.49 ± 0.59 µg/mL, respectively without any cytotoxicity effect. Mode of action analysis demonstrated that of C. domestica and C. heyneana exhibit HCV in the entry step, while C. xanthorrhiza inhibit in the entry and post entry steps of HCV life cycle. Docking analysis to predict the interaction of curcumin, the main compound of curcuma genus, revealed a strong interaction between curcumin and 4GAG receptor, a protein involved in the entry step of HCV infection. Moreover, it was also reported to possess good interaction with 4EAW, an HCV NS5B, which plays an important role in HCV replication. These results suggested that C. domestica, C. xanthorrhiza, and C. Heyneana possessed strong inhibition against hepatitis C virus, therefore they may be good candidates for anti-HCV agents

    ANTIHEPATITIS C VIRUS ACTIVITY OF INDONESIAN MAHOGANY (TOONA SURENI)

    Get PDF
     Objective: Toona sureni (Indonesian mahogany) is a member of Meliaceae family and locally known as suren. Previous study reported that T. sureni leaves extract exhibited antiviral activity with 50% inhibitory concentration (IC50) value of 13.9 ± 1.6 μg/ml against hepatitis C virus (HCV) J6/JFH1. Cytotoxicity analysis of T. sureni leaves extract did not reveal any cytotoxicity effect; therefore, further study was taken to investigate the active substances from the extract.Methods: Bioassay-guided isolation of anti-HCV was conducted using Huh-7.5 cells infected with HCV J6/JFH1 in the presence of extracts, fractions, or compounds from the plant.Results: Ethyl acetate fraction (Fr E) exhibited high anti-HCV activity with IC50 value of 1.7 μg/ml. Further, separation of Fr E by open column chromatography resulted in nine sub-fractions (sub-Fr E1-E9). Sub-Fr E3 and E4 have IC50 value of 29.90 μg/ml and 7.68 μg/ml, respectively. Polyphenols compounds have been isolated from sub-Fr E3 and E4. The structures have been determined to be ethyl gallate (1), methyl gallate (2), catechin (3), gallic acid (4), and quercetin 3-O-rhamnoside (5). Among the isolated compounds, gallic acid showed to possess strong anti-HCV activity with IC50 value of 15.9 μg/ml.Conclusion: T. sureni and its isolated compound, gallic acid, may be good candidates to develop for alternative and/or complementary agents of anti-HCV infection

    Antiviral Activity of the dichloromethane extracts from Artocarpus heterophyllus leaver against hepatitis C virus

    Get PDF
    Objective To determine anti-viral activities of three Artocarpus species: Artocarpus altilis, Artocarpus camansi, and Artocarpus heterophyllus (A. heterophyllus) against Hepatitis C Virus (HCV). Methods Antiviral activities of the crude extracts were examined by cell culture method using Huh7it-1 cells and HCV genotype 2a strain JFH1. The mode of action for anti-HCV activities was determined by time-of-addition experiments. The effect on HCV RNA replication and HCV accumulation in cells were analyzed by quantitative reverse transcription-PCR and western blotting, respectively. Results The dichloromethane (DCM) extract of A. heterophyllus exhibited strong anti-HCV activity with an inhibitory concentration (IC50) value of (1.5 ± 0.6) μg/mL without obvious toxicity. The DCM extracts from Artocarpus altilis and Artocarpus camansi showed moderate anti-HCV activities with IC50 values being (6.5 ± 0.3) μg/mL and (9.7 ± 1.1) μg/mL, respectively. A time-of-addition studies showed that DCM extract from A. heterophyllus inhibited viral entry process though a direct virucidal activity and targeting host cells. HCV RNA replication and HCV protein expression were slightly reduced by the DCM treatment at high concentration. Conclusions The DCM extract from A. heterophyllus is a good candidate to develop an antiviral agent to prevent HCV grant reinfection following liver transplantation

    Antiviral activity of the dichloromethane extracts from Artocarpus heterophyllus leaves against hepatitis C virus.

    Get PDF
    Objective: To determine anti-viral activities of three Artocarpus species: Artocarpus altilis, Artocarpus camansi, and Artocarpus heterophyllus (A. heterophyllus) against Hepatitis C Virus (HCV). Methods: Antiviral activities of the crude extracts were examined by cell culture methodusing Huh7it-1 cells and HCV genotype 2a strain JFH1. The mode of action for anti-HCVactivities was determined by time-of-addition experiments. The effect on HCV RNAreplication and HCV accumulation in cells were analyzed by quantitative reversetranscription-PCR and western blotting, respectively. Results: The dichloromethane (DCM) extract of A.heterophyllus exhibited strong anti HCV activity with an inhibitory concentration (IC) value of (1.5 ± 0.6) mg/mL without obvious toxicity. The DCM extracts from Artocarpus altilis and Artocarpus camansi showed moderate anti-HCV activities with IC 50 50 values being (6.5 ± 0.3) mg/mL and (9.7 ± 1.1)mg/mL, respectively. A time-of-addition studies showed that DCM extractfrom A. heterophyllus inhibited viral entry process though a direct virucidal activity and targeting host cells. HCV RNA replication and HCV protein expression were slightly reduced by the DCM treatment at high concentration. Conclusions: The DCM extract from A. heterophyllus is a good candidate to develop an antiviral agent to prevent HCV grant reinfection following liver transplantation

    Antiviral Activity of Cananga odorata Against Hepatitis B Virus

    Get PDF
    Chronic hepatitis B virus (HBV) infection can lead to liver cirrhosis and hepatocellular carcinoma. Current therapeutic drugs for chronic hepatitis B using pegylated interferons and nucleos(t)ide analogs have limited efficacy. Therefore, the development of novel and safe antivirals is required. Natural products including medicinal plants produce complex and structurally diverse compounds, some of which offer suitable targets for antiviral screening studies. In the present study, we screened various crude extracts from Indonesian plants for anti-HBV activity by determining their effects on the production of extracellular HBV DNA in Hep38.7-Tet cells and HBV entry onto a HBV-susceptible cell line, HepG2-NTCP, with the following results: (1) In Hep38.7-Tet cells, Cananga odorata exhibited the highest anti-HBV activity with a 50% inhibitory concentration (IC50) of 56.5 μg/ml and 50% cytotoxic concentration (CC50) of 540.2 μg/ml (Selectivity Index: 9.6). (2) The treatment of HepG2-NTCP cells with Cassia fistula, C. odorata, and Melastoma malabathricum at concentrations of 100 μg/ml lowered the levels of HBsAg production to 51.2%, 58.0%, and 40.1%, respectively, compared to untreated controls, and IC50 and CC50 values of C. odorata were 142.9 μg/ml and >400 μg/ml. In conclusion, the C. odorata extract could be a good candidate for the development of anti-HBV drugs

    Alkaloid and benzopyran compounds of Melicope latifolia fruit exhibit anti-hepatitis C virus activities

    Get PDF
    Background New agents for developing alternative or complementary medicine to treat the hepatitis C virus (HCV) are still needed due to high rates of HCV infection globally and the current limitations of available treatments. Treatment of HCV with a combination of direct acting antivirals have been shown to be approximately 90% effective but will be limited in the future due to the emergence of drug resistance and high cost. The leaves of Melicope latifolia have previously been reported to have anti-HCV activity and are a potential source of bioactive compounds for future novel drug development. This study aimed to evaluate the efficacy of the extract of M. latifolia fruit to treat HCV and to isolate its active compounds. Method M. latifolia fruit was extracted using methanol and purified using vacuum liquid chromatography (VLC) and Radial Chromatography. The anti-HCV activity was analyzed using cell culture lines Huh7it-1 and JFH1 (genotype 2a). Time-of-addition and immunoblotting studies were performed to identify the mode of action of the isolated active compounds. The structures of the active compounds were determined using nuclear magnetic resonance (NMR) spectra, UV, IR, and Mass Spectra. Results Six known compounds were isolated from M. latifolia fruit: O-methyloktadrenolon, alloevodionol, isopimpinellin, alloxanthoxyletin, methylevodionol, and N-methylflindersine. N-methylflidersine was the most active compound with IC50 value of 3.8 μg/ml while methylevodionol, isopimpinellin, and alloevodionol were less active. O-methyloktadrenolon and alloxanthoxyletin were moderately active with IC50 values of 10.9 and 21.72 μg/ml, respectively. N-methylflidersine decreased level of HCV NS3 protein expression in the cells. Conclusion The alkaloid compound, N-methylflindersine which was isolated from M. latifolia possesses anti-HCV activity through post-entry inhibition and suppressed NS3 protein expression
    corecore