38 research outputs found

    Feasibility of the Use of Neutron Activation Analysis Techniques in an Underwater Environment

    Get PDF
    Elements when bombarded with neutrons emit a gamma ray that is characteristic of the isotope that underwent a neutron induced nuclear reaction; this is known as neutron activation. The characteristic gamma energy of an isotope can then be detected and recorded. One can then analyze the gamma energies captured and determine the elemental makeup of the sample. This form of analysis can be used in an underwater environment making it potentially a valuable tool for agencies tasked with maritime security of ports and waterways, or clean-up operations. This thesis will focus on the feasibility of neutron interrogation using pulsed fast/thermal neutrons in an underwater environment for detecting various chemical substances in metal containers. A hermetically sealed, submersible container was used to test a d-T neutron generator’s and semiconductor detector’s functionality underwater in regards to detecting such chemicals as sulfur, nitrogen and chlorine rich materials

    Early Infrared Spectral Development of V1187 Scorpii (Nova Scorpii 2004 No. 2)

    Get PDF
    We report on an unprecedented infrared time series of spectra of V1187 Sco, a very fast ONeMg nova. The observations covered a 56 day period (2004 August 6-September 30) starting 2 days after the nova's peak brightness. Time evolution of the spectra revealed changing line strengths and profiles on timescales of less than a day to weeks as the nova evolved from early postmaximum to early coronal phases. When our ground-based optical and Spitzer Space Telescope data were combined, the wavelength coverage of 0.38-36 μm allowed an accurate spectral energy distribution to be derived when it was about 6 weeks after outburst. Developing double structure in the He I lines showed them changing from narrow to broad in only a few days. Using the O I lines in combination with the optical spectra, we derived a reddening of E(B - V) = 1.56 ± 0.08 and a distance of 4.9 ± 0.5 kpc. Modeling of the ejected material strongly suggested that it was geometrically thick with ΔR/R = 0.8-0.9 (more of a wind than a shell) and a low filling factor of order a few percent. The line shapes were consistent with a cylindrical jet, bipolar, or spherical Hubble flow expansion with a maximum speed of about -3000 km s-1. The central peak appeared to be more associated with the spherical component, while the two peaks (especially in Hβ) suggested a ring with either a lower velocity component or with its axis inclined to the line of sight

    On the origin and evolution of the material in 67P/Churyumov-Gerasimenko

    Get PDF
    International audiencePrimitive objects like comets hold important information on the material that formed our solar system. Several comets have been visited by spacecraft and many more have been observed through Earth- and space-based telescopes. Still our understanding remains limited. Molecular abundances in comets have been shown to be similar to interstellar ices and thus indicate that common processes and conditions were involved in their formation. The samples returned by the Stardust mission to comet Wild 2 showed that the bulk refractory material was processed by high temperatures in the vicinity of the early sun. The recent Rosetta mission acquired a wealth of new data on the composition of comet 67P/Churyumov-Gerasimenko (hereafter 67P/C-G) and complemented earlier observations of other comets. The isotopic, elemental, and molecular abundances of the volatile, semi-volatile, and refractory phases brought many new insights into the origin and processing of the incorporated material. The emerging picture after Rosetta is that at least part of the volatile material was formed before the solar system and that cometary nuclei agglomerated over a wide range of heliocentric distances, different from where they are found today. Deviations from bulk solar system abundances indicate that the material was not fully homogenized at the location of comet formation, despite the radial mixing implied by the Stardust results. Post-formation evolution of the material might play an important role, which further complicates the picture. This paper discusses these major findings of the Rosetta mission with respect to the origin of the material and puts them in the context of what we know from other comets and solar system objects

    Classical Macrodynamics and the Labor Theory of Value

    Get PDF
    This paper outlines a multisector dynamic model of the convergence of market prices to natural prices in conditions of fixed technology and composition of demand. Prices and quantities adjust in real-time in response to excess supplies and differential profit-rates. Finance capitalists earn interest income by supplying money-capital to fund production. Industrial capitalists, as the owners of firms, are liable for profits and losses. Market prices stabilize to profit-equalizing prices of production proportional to the total coexisting labor required to reproduce commodities. This result resolves the classical problem of the incommensurability between money and labor-value accounts in conditions of profits on stock, i.e. Marx's transformation problem

    Financial Stability: The Significance and Distinctiveness of Islamic Banking in Malaysia

    Full text link
    This paper explores the significance of Islamic banking in Malaysia for stability in the country's economy as a whole. Neither conventional theory nor Islamic economics puts forward a systematic explanation of financial intermediation; consequently, neither is capable of identifying destabilizing elements in the system. Instead, a flow- of-funds approach similar to Minsky's own is applied to the (post-) modern consumption-led) business cycle and financial (and asset) market. Malaysia's structural current account surplus contributes to the overcapitalization of domestic firms. This in turn finances a financial (as opposed to an industrial), consumptionled (instead of investment-led) business cycle, where banking favors destabilizing asset price inflation. Islamic banks operating interdependently with conventional ones contribute to economic destabilization channeling surplus funds from the corporate to the household sector

    Spliceosome malfunction causes neurodevelopmental disorders with overlapping features

    Get PDF
    Pre-mRNA splicing is a highly coordinated process. While its dysregulation has been linked to neurological deficits, our understanding of the underlying molecular and cellular mechanisms remains limited. We implicated pathogenic variants in U2AF2 and PRPF19, encoding spliceosome subunits in neurodevelopmental disorders (NDDs), by identifying 46 unrelated individuals with 23 de novo U2AF2 missense variants (including 7 recurrent variants in 30 individuals) and 6 individuals with de novo PRPF19 variants. Eight U2AF2 variants dysregulated splicing of a model substrate. Neuritogenesis was reduced in human neurons differentiated from human pluripotent stem cells carrying two U2AF2 hyper-recurrent variants. Neural loss of function (LoF) of the Drosophila orthologs U2af50 and Prp19 led to lethality, abnormal mushroom body (MB) patterning, and social deficits, which were differentially rescued by wild-type and mutant U2AF2 or PRPF19. Transcriptome profiling revealed splicing substrates or effectors (including Rbfox1, a third splicing factor), which rescued MB defects in U2af50deficient flies. Upon reanalysis of negative clinical exomes followed by data sharing, we further identified 6 patients with NDD who carried RBFOX1 missense variants which, by in vitro testing, showed LoF. Our study implicates 3 splicing factors as NDD-causative genes and establishes a genetic network with hierarchy underlying human brain development and function

    Towards Simulation-Based Business Process Management

    No full text
    Simulation and optimization of business processes can provide a basis for Business Process Management
    corecore