165 research outputs found

    Massive surface-plasmon polaritons

    Get PDF
    It is well-known that a quantum of light (photon) has a zero mass in vacuum. Entering into a medium the photon creates a quasiparticle (polariton, plasmon, surface-phonon, surface-plasmon polariton, etc.) whose rest mass is generally not zero. In this letter, devoted to the memory of Mark Stockman, we evaluate the rest mass of light-induced surface-plasmon polaritons (SPPs) and discuss an idea that collisions of two massive SPP quasiparticles can result in changes of their frequencies according to the energy and momentum conservation laws

    Direct amplitude-phase near-field observation of higher-order anapole states

    Full text link
    Anapole states associated with the resonant suppression of electric-dipole scattering exhibit minimized extinction and maximized storage of electromagnetic energy inside a particle. Using numerical simulations, optical extinction spectroscopy and amplitude-phase near-field mapping of silicon dielectric disks, we demonstrate high-order anapole states in the near-infrared wavelength range (900-1700 nm). We develop the procedure for unambiguously identifying anapole states by monitoring the normal component of the electric near-field and experimentally detect the first two anapole states as verified by far-field extinction spectroscopy and confirmed with the numerical simulations. We demonstrate that higher order anapole states possess stronger energy concentration and narrower resonances, a remarkable feature that is advantageous for their applications in metasurfaces and nanophotonics components, such as non-linear higher-harmonic generators and nanoscale lasers

    High-efficiency silicon metasurface mirror on a sapphire substrate

    Get PDF
    For a possible implementation of high-efficiency Si-nanosphere metasurface mirrors functioning at telecom wavelengths in future gravitational wave detectors, exact dimensional and configuration parameters of the total system, including substrate and protective coating, have to be determined a priori. The reflectivity of such multi-layer metasurfaces with embedded Si nanoparticles and their potential limitations need to be investigated. Here we present the results on how the substrate and protective layer influence optical properties and demonstrate how dimensional and material characteristics of the structure alter light reflectivity. Additionally, we consider the impact of manufacturing imperfections, such as fluctuations of Si nanoparticle sizes and their exact placement, on the metasurface reflectivity. Finally, we demonstrate how high reflectivity of the system can be preserved under variations of the protective layer thickness, incident angle of light, and its polarization

    Evolutionary and genetic algorithms for design of metadevices working on electric dipole resonance

    Get PDF
    All-dielectric nanophotonics is a rapidly growing field of modern science. Metasurfaces and other planar devices based on all-dielectric nanoparticles lead to manage the light propagation at the nanoscale. Impressive effects such as perfect absorption, invisibility, chirality effects, negative refraction, light focusing in the area with size smaller than wavelength, nano-lasing etc - can be achieved with all-dielectric technologies. While it is needed to use more and more complicated designs for solution of modern nanophotonics' currents tasks, non-classical methods of optimization become relevant. For example, to design reconfigurable metalenses with an additional degree of freedom such as polarizability or temperature dependence, evolutionary or genetic algorithms show their high applicability. In this work, we show a new approach to design metalenses with evolutionary and genetic algorithms. © 2020 IOP Publishing Ltd

    Photonic bandgap plasmonic waveguides

    Full text link
    A novel type of a plasmonic waveguide has been proposed featuring an "open" design that is easy to manufacture, simple to excite and that offers a convenient access to a plasmonic mode. Optical properties of photonic bandgap (PBG) plasmonic waveguides are investigated experimentally by leakage radiation microscopy and numerically using the finite element method confirming photonic bandgap guidance in a broad spectral range. Propagation and localization characteristics of a PBG plasmonic waveguide have been discussed as a function of the wavelength of operation, waveguide core size and the number of ridges in the periodic reflector for fundamental and higher order plasmonic modes of the waveguide

    All-dielectric nanophotonics: the quest for better materials and fabrication techniques

    Get PDF
    All-dielectric nanophotonics is an exciting and rapidly developing area of nano-optics that utilizes the resonant behavior of high-index low-loss dielectric nanoparticles to enhance light-matter interaction at the nanoscale. When experimental implementation of a specific all-dielectric nanostructure is desired, two crucial factors have to be considered: the choice of a high-index material and a fabrication method. The degree to which various effects can be enhanced relies on the dielectric response of the chosen material as well as the fabrication accuracy. Here, we provide an overview of available high-index materials and existing fabrication techniques for the realization of all-dielectric nanostructures. We compare performance of the chosen materials in the visible and IR spectral ranges in terms of scattering efficiencies and Q factors of the magnetic Mie resonance. Methods for all-dielectric nanostructure fabrication are discussed and their advantages and disadvantages are highlighted. We also present an outlook for the search for better materials with higher refractive indices and novel fabrication methods that will enable low-cost manufacturing of optically resonant high-index nanoparticles. We believe that this information will be valuable across the field of nanophotonics and particularly for the design of resonant all-dielectric nanostructures

    Polarization Switching Between Electric and Magnetic Quasi-Trapped Modes in Bianisotropic All-Dielectric Metasurfaces

    Get PDF
    A general strategy for the realization of electric and magnetic quasi-trapped modes located at the same spectral position is presented. This strategy's application makes it possible to design metasurfaces allowing switching between the electric and magnetic quasi-trapped modes by changing the polarization of the incident light wave. The developed strategy is based on two stages: the application of the dipole approximation for determining the conditions required for the implementation of trapped modes at certain spectral positions and the creation of the energy channels for their excitation by introducing a weak bianisotropy in nanoparticles. Since excitation of trapped modes results in a concentration of electric and magnetic energies in the metasurface plane, the polarization switching provides possibilities to change and control the localization and distribution of optical energy at the sub-wavelength scale. A practical method for spectral tuning of quasi-trapped modes in metasurfaces composed of nanoparticles with a preselected shape is demonstrated. As an example, the optical properties of a metasurface composed of silicon triangular prisms are analyzed and discussed

    Fabrication of submicron structures by three-dimensional laser lithography

    No full text
    As a demonstration of unique capabilities of three dimensional laser lithography, an example complex shape microobject and photonic crystals with “woodpile” structure for the infrared spectral range are fabricated by this technique. Photonic dispersion relations for the woodpile structure are calculated for different values of the permittivity contrast and the filling factor.This study was partially supported by the Government of the Russian Federation (project no. 074U01) and the Russian Foundation for Basic Research (project no. 130200186)

    Nonradiating anapole modes in dielectric nanoparticles

    No full text
    Nonradiating current configurations attract attention of physicists for many years as possible models of stable atoms. One intriguing example of such a nonradiating source is known as 'anapole'. An anapole mode can be viewed as a composition of electric and toroidal dipole moments, resulting in destructive interference of the radiation fields due to similarity of their far-field scattering patterns. Here we demonstrate experimentally that dielectric nanoparticles can exhibit a radiationless anapole mode in visible. We achieve the spectral overlap of the toroidal and electric dipole modes through a geometry tuning, and observe a highly pronounced dip in the far-field scattering accompanied by the specific near-field distribution associated with the anapole mode. The anapole physics provides a unique playground for the study of electromagnetic properties of nontrivial excitations of complex fields, reciprocity violation and Aharonov-Bohm like phenomena at optical frequencies.The work of A.E.M. was supported by the Australian Research Council via Future Fellowship program (FT110100037). The authors at DSI were supported by DSI core funds. Fabrication, Scanning Electron Microscope Imaging and NSOM works were carried out in facilities provided by SnFPC@DSI (SERC Grant 092 160 0139). Zhen Ying Pan (DSI) is acknowledged for SEM imaging. Yi Zhou (DSI) is acknowledged for silicon film growth. Leonard Gonzaga (DSI), Yeow Teck Toh (DSI) and Doris Ng (DSI) are acknowledged for development of the silicon nanofabrication procedure. B.N.C. acknowledges support from the Government of Russian Federation, Megagrant No. 14.B25.31.0019
    • …
    corecore