80 research outputs found

    Lexicality and frequency in specific language impairment: accuracy and error data from two nonword repetition tests

    Get PDF
    Purpose: Deficits in phonological working memory and deficits in phonological processing have both been considered potential explanatory factors in Specific Language Impairment (SLI). Manipulations of the lexicality and phonotactic frequency of nonwords enable contrasting predictions to be derived from these hypotheses. Method: 18 typically developing (TD) children and 18 children with SLI completed an assessment battery that included tests of language ability, non-verbal intelligence, and two nonword repetition tests that varied in lexicality and frequency. Results: Repetition accuracy showed that children with SLI were unimpaired for short and simple high lexicality nonwords, whereas clear impairments were shown for all low lexicality nonwords. For low lexicality nonwords, greater repetition accuracy was seen for nonwords constructed from high over low frequency phoneme sequences. Children with SLI made the same proportion of errors that substituted a nonsense syllable for a lexical item as TD children, and this was stable across nonword length. Conclusions: The data show support for a phonological processing deficit in children with SLI, where long-term lexical and sub-lexical phonological knowledge mediate the interpretation of nonwords. However, the data also suggest that while phonological processing may provide a key explanation of SLI, a full account is likely to be multi-faceted

    Autoregulation of the Drosophila Noncoding roX1 RNA Gene

    Get PDF
    Most genes along the male single X chromosome in Drosophila are hypertranscribed about two-fold relative to each of the two female X chromosomes. This is accomplished by the MSL (male-specific lethal) complex that acetylates histone H4 at lysine 16. The MSL complex contains two large noncoding RNAs, roX1 (RNA on X) and roX2, that help target chromatin modifying enzymes to the X. The roX RNAs are functionally redundant but differ in size, sequence, and transcriptional control. We wanted to find out how roX1 production is regulated. Ectopic DC can be induced in wild-type (roX1+ roX2+) females if we provide a heterologous source of MSL2. However, in the absence of roX2, we found that roX1 expression failed to come on reliably. Using an in situ hybridization probe that is specific only to endogenous roX1, we found that expression was restored if we introduced either roX2 or a truncated but functional version of roX1. This shows that pre-existing roX RNA is required to positively autoregulate roX1 expression. We also observed massive cis spreading of the MSL complex from the site of roX1 transcription at its endogenous location on the X chromosome. We propose that retention of newly assembled MSL complex around the roX gene is needed to drive sustained transcription and that spreading into flanking chromatin contributes to the X chromosome targeting specificity. Finally, we found that the gene encoding the key male-limited protein subunit, msl2, is transcribed predominantly during DNA replication. This suggests that new MSL complex is made as the chromatin template doubles. We offer a model describing how the production of roX1 and msl2, two key components of the MSL complex, are coordinated to meet the dosage compensation demands of the male cell
    • …
    corecore