727 research outputs found

    Guidelines for the monitoring of Lucanus cervus

    Get PDF
    Lucanus cervus is one of the most charismatic saproxylic beetles, widely distributed in Europe. The species is typical of mature deciduous forests, especially oak woodlands. Loss and fragmentation of suitable habitats is one of the major threats for this species which is included in Annex II of the Habitats Directive. Despite several studies carried out in the last years for the monitoring methods of the species, an analytical comparison between them is still lacking. The aims of this paper are (i) to review the current knowledge about systematics, ecology and conservation practices on L. cervus and (ii) to present the research carried out during the Life MIPP project, in order to define a standard monitoring method with a suitable protocol to be used for addressing the obligations of the Habitats Directive. Overall, five methods were tested during three years in two different study areas. Based on these results, a suitable standard method for L. cervus is proposed in this paper and, in order to assess the conservation status of populations and to compare them over time, a simple method for the calculation of a reference value is provided

    Machine Learning Based Fall Detector with a Sensorized Tip

    Get PDF
    Fall detection has become an area of interest in recent years, as quick response to these events is critical to reduce the morbidity and mortality rate. In order to ensure proper fall detection, several technologies have been developed, including vision system, environmental detection systems, and wearable sensor based systems. However, in elderly or impaired people, it has been shown that the implementation of sensors in Assistive Devices for Walking, such as crutches or canes, can also be a promising alternative. In this work, a Support Vector Machine (SVM) based Fall Detection system is proposed, which uses the data provided by a Sensorized Tip which can be attached to different Assistive Devices for Walking (ADW). Unlike other approaches, the developed one is able to differentiate the fall of the ADW from the fall of the user. For that purpose, the developed Fall Detector uses two modules connected in series. The first one detects all falls, while the second differentiates between user and ADW falls. The proposed approach is validated in a set of experimental tests carried out by healthy volunteers that have simulated different falls. In addition, a comparative analysis is carried out by comparing the performance of the Sensorized Tip based Fall Detector and a state-of-the-art commercial accelerometer system. Results demonstrate that the proposed approach provides high Fall Detection Ratios (over 90%), similar or higher to wearable-sensor based approaches

    Aquatic Therapy after Incomplete Spinal Cord Injury: Gait Initiation Analysis Using Inertial Sensors

    Get PDF
    : Populations with potential damage to somatosensory, vestibular, and visual systems or poor motor control are often studied during gait initiation. Aquatic activity has shown to benefit the functional capacity of incomplete spinal cord injury (iSCI) patients. The present study aimed to evaluate gait initiation in iSCI patients using an easy-to-use protocol employing four wearable inertial sensors. Temporal and acceleration-based anticipatory postural adjustment measures were computed and compared between dry-land and water immersion conditions in 10 iSCI patients. In the aquatic condition, an increased first step duration (median value of 1.44 s vs. 0.70 s in dry-land conditions) and decreased root mean squared accelerations for the upper trunk (0.39 m/s2 vs. 0.72 m/s2 in dry-land conditions) and lower trunk (0.41 m/s2 vs. 0.85 m/s2 in dry-land conditions) were found in the medio-lateral and antero-posterior direction, respectively. The estimation of these parameters, routinely during a therapy session, can provide important information regarding different control strategies adopted in different environments

    Surgical Training on Ex Vivo Ovine Model in Otolaryngology Head and Neck Surgery: A Comprehensive Review

    Get PDF
    Background: Nowadays, head and neck surgical approaches need an increased level of anatomical knowledge and practical skills; therefore, the related learning curve is both flat and long. On such procedures, surgeons must decrease operating time as much as possible to reduce the time of general anesthesia and related stress factors for patients. Consequently, little time can be dedicated for training skills of students and young residents in the operating theater. Fresh human cadavers offer the most obvious surrogate for living patients, but they have several limitations, such as cost, availability, and local regulations. Recently, the feasibility of using ex vivo animal models, in particular ovine ones, have been considered as high-fidelity alternatives to cadaveric specimens. Methods: This comprehensive review explores all of head and neck otolaryngology applications with this sample. We analyzed studies about ear surgery, orbital procedures, parotid gland and facial nerve reanimation, open laryngeal and tracheal surgery, microlaryngoscopy procedures, laryngotracheal stenosis treatment, and diagnostic/operative pediatric endoscopy. For each different procedure, we underline the main applications, similarities, and limitations to human procedures so as to improve the knowledge of this model as a useful tool for surgical training. Results: An ovine model is easily available and relatively inexpensive, it has no limitations associated with religious or animal ethical issues, and it is reliable for head and neck surgery due to similar consistencies tissues and neurovascular structures with respect to humans. However, some other issues should be considered, such as differences about some anatomical features, the risk of zoonotic diseases, and the absence of bleeding during training. Conclusion: This comprehensive review highlights the potentials of an ex vivo ovine model and aims to stimulate the scientific and academic community to further develop it for other applications in surgical education

    Young Onset Alzheimer’s Disease Associated with C9ORF72 Hexanucleotide Expansion: Further Evidence for a Still Unsolved Association

    Get PDF
    Frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) are recognized as part of a disease continuum (FTD-ALS spectrum), in which the most common genetic cause is chromosome 9 open reading frame 72 (C9ORF72) gene hexanucleotide repeat expansion. The clinical phenotype of patients carrying this expansion varies widely and includes diseases beyond the FTD-ALS spectrum. Although a few cases of patients with C9ORF72 expansion and a clinical or biomarker-supported diagnosis of Alzheimer’s disease (AD) have been described, they have been considered too sparse to establish a definite association between the C9ORF72 expansion and AD pathology. Here, we describe a C9ORF72 family with pleomorphic phenotypical expressions: a 54-year-old woman showing cognitive impairment and behavioral disturbances with both neuroimaging and cerebrospinal fluid (CSF) biomarkers consistent with AD pathology, her 49-year-old brother with typical FTD-ALS, and their 63-year-old mother with the behavioral variant of FTD and CSF biomarkers suggestive of AD pathology. The young onset of disease in all three family members and their different phenotypes and biomarker profiles make the simple co-occurrence of different diseases an extremely unlikely explanation. Our report adds to previous findings and may contribute to further expanding the spectrum of diseases associated with C9ORF72 expansion

    Identification of a molecular marker linked to apomixis in Brachiaria humidicola (Poaceae)

    Get PDF
    A bulked segregant analysis using RAPD technique was carried out to identify molecular markers linked to apomixis in a Brachiaria humidicola F1 population that segregated 1 : 1 for the mode of reproduction (apomixis and sexual). A marker related to the apo-locus was found. Segregation data, together with this marker were used to generate a map of the region. This marker was located at 4.61 cM of the target locus, and it can be used in deploying marker-assisted selection for mode of reproduction in the hybrid progenies of this species

    Crystal Structure of the Sodium Cobaltate Deuterate Superconductor NaxCoO2o4xD2O (x=1/3)

    Full text link
    Neutron and x-ray powder diffraction have been used to investigate the crystal structures of a sample of the newly-discovered superconducting sodium cobaltate deuterate compound with composition Na0.31(3)CoO2o1.25(2)D2O and its anhydrous parent compound Na0.61(1)CoO2. The deuterate superconducting compound is formed by coordinating four D2O molecules (two above and two below) to each Na ion in a way that gives Na-O distances nearly equal to those in the parent compound. One deuteron of the D2O molecule is hydrogen bonded to an oxygen atom in the CoO2 plane and the oxygen atom and the second deuteron of each D2O molecule lie approximately in a plane between the Na layer and the CoO2 layers. This coordination of Na by four D2O molecules leads to ordering of the Na ions and D2O molecules. The sample studied here, which has Tc=4.5 K, has a refined composition of Na0.31(3)CoO2o1.25(2)D2O, in agreement with the expected 1:4 ratio of Na to D2O. These results show that the optimal superconducting composition should be viewed as a specific hydrated compound, not a solid solution of Na and D2O (H2O) in NaxCoO2oyD2O. Studies of physical properties vs. Na or D2O composition should be viewed with caution until it is verified that the compound remains in the same phase over the composition range of the study.Comment: 22 pages, 8 figure
    • …
    corecore