82 research outputs found

    Diagnosi e stadiazione preoperatoria del carcinoma endometriale:la nostra esperienza

    Get PDF
    Il carcinoma endometriale è la principale causa di morbidità e mortalità per la popolazione femminile, con circa 200 000 casi diagnosticati ogni anno. L' iter diagnostico nella patologia maligna endometriale dovrebbe portare non solo alla diagnosi ma ad una stadiazione preoperatoria quanto più possibile precisa per poter modulare l'approccio chirurgico e/o terapeutico. Il nostro è uno studio retrospettivo di 74 casi di pazienti sottoposte ad intervento chirurgico presso la nostra struttura per adenocarcinoma endometriale o iperplasia atipica dell'endometrio, in seguito a diagnosi istologica ottenuta da biopsia endometriale o revisione della cavità uterina. Scopo dello studio è la valutazione dell'affidabilità della nostra stadiazione preoperatoria delle pazienti, ottenuta mediante esami clinico-strumentali e di imaging (ecografia trans-vaginale, risonanza magnetica, tomografia computerizzata) da cui derivano in parte le strategie terapeutiche. I risultati di queste indagini sono state messe a confronto con i risultati dei referti istologici postoperatori. La biopsia preoperatoria si è dimostrata in grado di rilevare la patologia tumorale nel 68% dei casi, con un errore di diagnosi nel 31.4% dei casi. L'ecografia transvaginale e la risonanza magnetica hanno dimostrato una buona accuratezza diagnostica nel definire l'invasione miometriale del carcinoma endometriale, con una sensibilità lievemente maggiore per la RM rispetto alla TVS, che viceversa mostrava una specificità superiore. La TC ha mostrato una buona specificità nel definire lo stato linfonodale. Anche se la stadiazione definitiva della malattia viene stabilita in base all'istologia postoperatoria, un'accurata stadiazione preoperatoria permette di effettuare un corretto approccio chirurgico per ogni paziente ed evitare la morbidità associata a trattamenti non necessari

    Cerebellar Ataxia with Complete Clinical Recovery and Resolution of MRI Lesions Related to Central Pontine Myelinolysis: Case Report and Literature Review

    Get PDF
    There are several reports of central pontine myelinolysis (CPM) in a setting of malnutrition, alcoholism, and chronic debilitating illness associated with electrolyte abnormalities, especially hyponatremia. The cause of myelinolysis is still under debate, and, although osmotic effects are thought to be responsible in most cases, alternative pathological factors should be considered [King et al.: Am J Med Sci 2010;339:561–567]. We report a case of CPM in a patient with recent chemotherapy for colon cancer without electrolyte unbalance and otherwise unexplained causes. Moreover, the present case is an example of the unusual clinical ataxic variant, followed by complete recovery without any specific treatment. The diagnosis was confirmed by MRI, which showed a characteristic hyperintense signal abnormality in the central part of the pons with an unaffected outer rim. One month later, we observed complete resolution of clinical and radiological symptoms

    Drospirenone increases endothelial nitric oxide synthesis via a combined action on progesterone and mineralocorticoid receptors

    Get PDF
    BACKGROUND: Progestins have actions on the cardiovascular system, which depend on the structure as well as on receptor binding characteristics. Drospirenone (DRSP) is a progestin that uniquely interferes with the signaling of the mineralocorticoid receptor (MR). Hormone therapy containing DRSP results in blood pressure reduction in hypertensive post-menopausal women. METHODS: We describe the effects of DRSP on endothelial nitric oxide (NO) synthesis and compare them with those of progesterone (P) and of medroxyprogesterone acetate (MPA). In addition, we herein tested the relevance of the anti-mineralocorticoid activity of DRSP for NO synthesis. RESULTS: DRSP results in rapid activation of the endothelial NO synthase (eNOS) through mitogen-activated protein kinases and phosphatidylinositol 3-kinase as well as in enhanced eNOS expression. These actions depend on P receptor. When the cells are exposed to aldosterone, a reduction of eNOS expression is found that is antagonized by DRSP. This action is not shared by P or MPA. In addition, DRSP does not interfere with the induction or activation of eNOS induced by estradiol, as opposed to MPA. CONCLUSIONS: DRSP acts on endothelial cells via a combined action through the P and MRs. These results help to interpret the anti-hypertensive effects of hormonal therapies containing DRSP

    α-Synuclein Heterocomplexes with β-Amyloid Are Increased in Red Blood Cells of Parkinson's Disease Patients and Correlate with Disease Severity

    Get PDF
    Neurodegenerative disorders (NDs) are characterized by abnormal accumulation/misfolding of specific proteins, primarily α-synuclein (α-syn), β-amyloid1-42(Aβ1-42) and tau, in both brain and peripheral tissues. In addition to oligomers, the role of the interactions of α-syn with Aβ or tau has gradually emerged. Nevertheless, despite intensive research, NDs have no accepted peripheral markers for biochemical diagnosis. In this respect, Red Blood Cells (RBCs) are emerging as a valid peripheral model for the study of aging-related pathologies. Herein, a small cohort (N= 28) of patients affected by Parkinson's disease (PD) and age-matched controls were enrolled to detect the content of α-syn (total and oligomeric), Aβ1-42and tau (total and phosphorylated) in RBCs. Moreover, the presence of α-syn association with tau and Aβ1-42was explored by co-immunoprecipitation/western blotting in the same cells, and quantitatively confirmed by immunoenzymatic assays. For the first time, PD patients were demonstrated to exhibit α-syn heterocomplexes with Aβ1-42and tau in peripheral tissues; interestingly, α-syn-Aβ1-42concentrations were increased in PD subjects with respect to healthy controls (HC), and directly correlated with disease severity and motor deficits. Moreover, total-α-syn levels were decreased in PD subjects and inversely related to their motor deficits. Finally, an increase of oligomeric-α-syn and phosphorylated-tau was observed in RBCs of the enrolled patients. The combination of three parameters (total-α-syn, phosphorylated-tau and α-syn-Aβ1-42concentrations) provided the best fitting predictive index for discriminating PD patients from controls. Nevertheless further investigations should be required, overall, these data suggest α-syn hetero-aggregates in RBCs as a putative tool for the diagnosis of PD

    Differential Signal Transduction of Progesterone and Medroxyprogesterone Acetate in Human Endothelial Cells

    Get PDF
    AbstractThe conjugated equine estrogens-only arm of the Women's Health Initiative trial, showing a trend toward protection from heart disease as opposed to women receiving also medroxyprogesterone acetate (MPA), strengthens the debate on the cardiovascular effects of progestins. We compared the effects of progesterone (P) or MPA on the synthesis of nitric oxide and on the expression of leukocyte adhesion molecules, characterizing the signaling events recruited by these compounds. Although P significantly increases nitric oxide synthesis via transcriptional and nontranscriptional mechanisms, MPA is devoid of such effects. Moreover, when used together with physiological estradiol (E2) concentrations, P potentiates E2 effects, whereas MPA impairs E2 signaling. These findings are observed both in isolated human endothelial cells as well as in vivo, in ovariectomized rat aortas. A marked difference in the recruitment of MAPK and phosphatidylinositol-3 kinase explains the divergent effects of the two gestagens. In addition, both P and MPA decrease the adhesiveness of endothelial cells for leukocytes when given alone or with estrogen. MPA is more potent than P in inhibiting the expression of vascular cell adhesion molecule-1 and intercellular adhesion molecule-1. However, when administered together with physiological amounts of glucocorticoids, MPA (which also binds glucocorticoid receptor) markedly interferes with the hydrocortisone-dependent stabilization of the transcription factor nuclear factor ÎşB and with the expression of adhesion molecules, acting as a partial glucocorticoid receptor antagonist. Our findings show significant differences in the signal transduction pathways recruited by P and MPA in endothelial cells, which may have relevant clinical implications

    Prednisone vs high-dose dexamethasone in newly diagnosed adult primary immune thrombocytopenia: a randomized trial

    Get PDF
    A debate exists regarding which type of corticosteroids (standard-dose prednisone [PDN] or high-dose dexamethasone [HD-DXM]) is the best first-line treatment for adult patients with newly diagnosed untreated primary immune thrombocytopenia (pITP). An ad hoc study compared PDN with HD-DXM in newly diagnosed untreated patients with pITP (aged >= 18 but <= 80 years, platelet count of <= 20 or >20 but <50 x 10(9)/L, and bleeding score of >= 8). Patients were randomised to receive PDN 1 mg/kg per day from days 0 to 28 (Arm A) or HD-DXM 40 mg per day for 4 days, every 14 days, for 3 consecutive courses (Arm B). Fifty-nine of 113 patients (52.2%) were randomized to Arm A and 54 of 113 (47.8%) to Arm B. In evaluable patients, total initial responses (complete response [CR], partial response [PR], minimal response [MR]) were 44 of 56 (78.57%) in Arm A and 46 of 49 (93.88%) in Arm B at days 42 and 46, respectively (P = 0.0284). Total final responses (at day 180 from initial response) were 26 of 43 (60.47%) in Arm A and 23 of 39 (58.97%) in Arm B (P = 0.8907). Total persistent responses (at 12 months from initial response) were 25 of 31 (80.65%) in Arm A and 20 of 36 (55.56%) in Arm B (P = 0.0292). Seven relapses occurred. Median follow-up was 44.4 months. Overall survival was 100% at 48 months, overall disease-free survival was 81.11% at 48 months from day 180. PDN and pulsed HD-DXM were well tolerated; HD-DXM allows effective initial responses but less long lasting than PDN. This trial was registered at www.clinicaltrials.gov as #NCT00657410

    Extra-Nuclear Signalling of Estrogen Receptor to Breast Cancer Cytoskeletal Remodelling, Migration and Invasion

    Get PDF
    BACKGROUND: Estrogen is an established enhancer of breast cancer development, but less is known on its effect on local progression or metastasis. We studied the effect of estrogen receptor recruitment on actin cytoskeleton remodeling and breast cancer cell movement and invasion. Moreover, we characterized the signaling steps through which these actions are enacted. METHODOLOGY/PRINCIPAL FINDINGS: In estrogen receptor (ER) positive T47-D breast cancer cells ER activation with 17beta-estradiol induces rapid and dynamic actin cytoskeleton remodeling with the formation of specialized cell membrane structures like ruffles and pseudopodia. These effects depend on the rapid recruitment of the actin-binding protein moesin. Moesin activation by estradiol depends on the interaction of ER alpha with the G protein G alpha(13), which results in the recruitment of the small GTPase RhoA and in the subsequent activation of its downstream effector Rho-associated kinase-2 (ROCK-2). ROCK-2 is responsible for moesin phosphorylation. The G alpha(13)/RhoA/ROCK/moesin cascade is necessary for the cytoskeletal remodeling and for the enhancement of breast cancer cell horizontal migration and invasion of three-dimensional matrices induced by estrogen. In addition, human samples of normal breast tissue, fibroadenomas and invasive ductal carcinomas show that the expression of wild-type moesin as well as of its active form is deranged in cancers, with increased protein amounts and a loss of association with the cell membrane. CONCLUSIONS/SIGNIFICANCE: These results provide an original mechanism through which estrogen can facilitate breast cancer local and distant progression, identifying the extra-nuclear G alpha(13)/RhoA/ROCK/moesin signaling cascade as a target of ER alpha in breast cancer cells. This information helps to understand the effects of estrogen on breast cancer metastasis and may provide new targets for therapeutic interventions

    Comparative actions of progesterone, medroxyprogesterone acetate, drospirenone and nestorone on breast cancer cell migration and invasion

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Limited information is available on the effects of progestins on breast cancer progression and metastasis. Cell migration and invasion are central for these processes, and require dynamic cytoskeletal and cell membrane rearrangements for cell motility to be enacted.</p> <p>Methods</p> <p>We investigated the effects of progesterone (P), medroxyprogesterone acetate (MPA), drospirenone (DRSP) and nestorone (NES) alone or with 17β-estradiol (E2) on T47-D breast cancer cell migration and invasion and we linked some of these actions to the regulation of the actin-regulatory protein, moesin and to cytoskeletal remodeling.</p> <p>Results</p> <p>Breast cancer cell horizontal migration and invasion of three-dimensional matrices are enhanced by all the progestins, but differences are found in terms of potency, with MPA being the most effective and DRSP being the least. This is related to the differential ability of the progestins to activate the actin-binding protein moesin, leading to distinct effects on actin cytoskeleton remodeling and on the formation of cell membrane structures that mediate cell movement. E2 also induces actin remodeling through moesin activation. However, the addition of some progestins partially offsets the action of estradiol on cell migration and invasion of breast cancer cells.</p> <p>Conclusion</p> <p>These results imply that P, MPA, DRSP and NES alone or in combination with E2 enhance the ability of breast cancer cells to move in the surrounding environment. However, these progestins show different potencies and to some extent use distinct intracellular intermediates to drive moesin activation and actin remodeling. These findings support the concept that each progestin acts differently on breast cancer cells, which may have relevant clinical implications.</p

    Congenital myopathies: Clinical phenotypes and new diagnostic tools

    Get PDF
    Congenital myopathies are a group of genetic muscle disorders characterized clinically by hypotonia and weakness, usually from birth, and a static or slowly progressive clinical course. Historically, congenital myopathies have been classified on the basis of major morphological features seen on muscle biopsy. However, different genes have now been identified as associated with the various phenotypic and histological expressions of these disorders, and in recent years, because of their unexpectedly wide genetic and clinical heterogeneity, next-generation sequencing has increasingly been used for their diagnosis. We reviewed clinical and genetic forms of congenital myopathy and defined possible strategies to improve cost-effectiveness in histological and imaging diagnosis

    Extra-Nuclear Signaling of Progesterone Receptor to Breast Cancer Cell Movement and Invasion through the Actin Cytoskeleton

    Get PDF
    Progesterone plays a role in breast cancer development and progression but the effects on breast cancer cell movement or invasion have not been fully explored. In this study, we investigate the actions of natural progesterone and of the synthetic progestin medroxyprogesterone acetate (MPA) on actin cytoskeleton remodeling and on breast cancer cell movement and invasion. In particular, we characterize the nongenomic signaling cascades implicated in these actions. T47-D breast cancer cells display enhanced horizontal migration and invasion of three-dimensional matrices in the presence of both progestins. Exposure to the hormones triggers a rapid remodeling of the actin cytoskeleton and the formation of membrane ruffles required for cell movement, which are dependent on the rapid phosphorylation of the actin-regulatory protein moesin. The extra-cellular small GTPase RhoA/Rho-associated kinase (ROCK-2) cascade plays central role in progesterone- and MPA-induced moesin activation, cell migration and invasion. In the presence of progesterone, progesterone receptor A (PRA) interacts with the G protein Gα13, while MPA drives PR to interact with tyrosine kinase c-Src and to activate phosphatidylinositol-3 kinase, leading to the activation of RhoA/ROCK-2. In conclusion, our findings manifest that progesterone and MPA promote breast cancer cell movement via rapid actin cytoskeleton remodeling, which are mediated by moesin activation. These events are triggered by RhoA/ROCK-2 cascade through partially differing pathways by the two compounds. These results provide original mechanistic explanations for the effects of progestins on breast cancer progression and highlight potential targets to treat endocrine-sensitive breast cancers
    • …
    corecore