37 research outputs found

    Ambipolar suppression of superconductivity by ionic gating in optimally-doped BaFe2(As,P)2 ultrathin films

    Get PDF
    Superconductivity (SC) in the Ba-122 family of iron-based compounds can be controlled by aliovalent or isovalent substitutions, applied external pressure, and strain, the combined effects of which are sometimes studied within the same sample. Most often, the result is limited to a shift of the SC dome to different doping values. In a few cases, the maximum SC transition at optimal doping can also be enhanced. In this work, we study the combination of charge doping together with isovalent P substitution and strain by performing ionic gating experiments on BaFe2_2(As0.8_{0.8}P0.2_{0.2})2_2 ultrathin films. We show that the polarization of the ionic gate induces modulations to the normal-state transport properties that can be mainly ascribed to surface charge doping. We demonstrate that ionic gating can only shift the system away from the optimal conditions, as the SC transition temperature is suppressed by both electron and hole doping. We also observe a broadening of the resistive transition, which suggests that the SC order parameter is modulated nonhomogeneously across the film thickness, in contrast with earlier reports on charge-doped standard BCS superconductors and cuprates.Comment: 10 pages, 5 figure

    Low central venous saturation predicts poor outcome in patients with brain injury after major trauma: a prospective observational study

    Get PDF
    BACKGROUND: Continuous monitoring of central venous oxygen saturation (ScvO(2)) has been proposed as a prognostic indicator in several pathological conditions, including cardiac diseases, sepsis, trauma. To our knowledge, no studies have evaluated ScvO(2 )in polytraumatized patients with brain injury so far. Thus, the aim of the present study was to assess the prognostic role of ScvO(2 )monitoring during first 24 hours after trauma in this patients' population. METHODS: This prospective, non-controlled study, carried out between April 2006 and March 2008, was performed in a higher level Trauma Center in Florence (Italy). In the study period, 121 patients affected by major brain injury after major trauma were recruited. Inclusion criteria were: 1. Glasgow Coma Scale (GCS) score ≀ 13; 2. an Injury Severity Score (ISS) ≄ 15. Exclusion criteria included: 1. pregnancy; 2. age < 14 years; 3. isolated head trauma; 4. death within the first 24 hours from the event; 5. the lack of ScvO(2 )monitoring within 2 hours from the trauma. Demographic and clinical data were collected, including Abbreviated Injury Scale (AIS), Injury Severity Score (ISS), Simplified Acute Physiologic Score II (SAPS II), Marshall score. The worst values of lactate and ScvO(2 )within the first 24 hours from trauma, ICU length of stay (LOS), and 28-day mortality were recorded. RESULTS: Patients who deceased within 28 days showed higher age (53 ± 16.6 vs 43.8 ± 19.6, P = 0.043), ISS core (39.3 ± 14 vs 30.3 ± 10.1, P < 0.001), AIS score for head/neck (4.5 ± 0.7 vs 3.4 ± 1.2, P = 0.001), SAPS II score (51.3 ± 14.1 vs 42.5 ± 15, P = 0.014), Marshall Score (3.5 ± 0.7 vs 2.3 ± 0.7, P < 0.001) and arterial lactate concentration (3.3 ± 1.8 vs 6.7 ± 4.2, P < 0.001), than survived patients, whereas ScvO(2 )resulted significantly lower (66.7% ± 11.9 vs 70.1% ± 8.9 vs, respectively; P = 0.046). Patients with ScvO(2 )values ≀ 65% also showed higher 28-days mortality rate (31.3% vs 13.5%, P = 0.034), ICU LOS (28.5 ± 15.2 vs 16.6 ± 13.8, P < 0.001), and total hospital LOS (45.1 ± 20.8 vs 33.2 ± 24, P = 0.046) than patients with ScvO(2 )> 65%. CONCLUSION: ScvO(2 )value less than 65%, measured in the first 24 hours after admission in patients with major trauma and head injury, was associated with higher mortality and prolonged hospitalization

    Low central venous saturation predicts poor outcome in patients with brain injury after major trauma: a prospective observational study

    Get PDF
    Abstract Background Continuous monitoring of central venous oxygen saturation (ScvO2) has been proposed as a prognostic indicator in several pathological conditions, including cardiac diseases, sepsis, trauma. To our knowledge, no studies have evaluated ScvO2 in polytraumatized patients with brain injury so far. Thus, the aim of the present study was to assess the prognostic role of ScvO2 monitoring during first 24 hours after trauma in this patients' population. Methods This prospective, non-controlled study, carried out between April 2006 and March 2008, was performed in a higher level Trauma Center in Florence (Italy). In the study period, 121 patients affected by major brain injury after major trauma were recruited. Inclusion criteria were: 1. Glasgow Coma Scale (GCS) score ≀ 13; 2. an Injury Severity Score (ISS) ≄ 15. Exclusion criteria included: 1. pregnancy; 2. age 2 monitoring within 2 hours from the trauma. Demographic and clinical data were collected, including Abbreviated Injury Scale (AIS), Injury Severity Score (ISS), Simplified Acute Physiologic Score II (SAPS II), Marshall score. The worst values of lactate and ScvO2 within the first 24 hours from trauma, ICU length of stay (LOS), and 28-day mortality were recorded. Results Patients who deceased within 28 days showed higher age (53 ± 16.6 vs 43.8 ± 19.6, P = 0.043), ISS core (39.3 ± 14 vs 30.3 ± 10.1, P 2 resulted significantly lower (66.7% ± 11.9 vs 70.1% ± 8.9 vs, respectively; P = 0.046). Patients with ScvO2 values ≀ 65% also showed higher 28-days mortality rate (31.3% vs 13.5%, P = 0.034), ICU LOS (28.5 ± 15.2 vs 16.6 ± 13.8, P 2 > 65%. Conclusion ScvO2 value less than 65%, measured in the first 24 hours after admission in patients with major trauma and head injury, was associated with higher mortality and prolonged hospitalization.</p

    Atmospheric deposition of organic matter at a remote site in the central Mediterranean Sea: implications for the marine ecosystem

    Get PDF
    Abstract. Atmospheric fluxes of dissolved organic matter (DOM) were studied for the first time on the island of Lampedusa, a remote site in the central Mediterranean Sea (Med Sea), between 19 March 2015 and 1 April 2017. The main goals of this study were to quantify total atmospheric deposition of DOM in this area and to evaluate the impact of Saharan dust deposition on DOM dynamics in the surface waters of the Mediterranean Sea. Our data show high variability in DOM deposition rates without a clear seasonality and a dissolved organic carbon (DOC) input from the atmosphere of 120.7 mmol DOC m−2 yr−1. Over the entire time series, the average dissolved organic phosphorus (DOP) and dissolved organic nitrogen (DON) contributions to the total dissolved pools were 40 % and 26 %, respectively. The data on atmospheric elemental ratios also show that each deposition event is characterized by a specific elemental ratio, suggesting a high variability in DOM composition and the presence of multiple sources. This study indicates that the organic substances transported by Saharan dust on Lampedusa mainly come from a natural sea spray and that Saharan dust can be an important carrier of organic substances even though the load of DOC associated with dust is highly variable. Our estimates suggest that atmospheric input has a larger impact on the Med Sea than on the global ocean. Further, DOC fluxes from the atmosphere to the Med Sea can be up to 6 times larger than total river input. Longer time series combined with modeling would greatly improve our understanding of the response of DOM dynamics in the Med Sea to the change in aerosol deposition pattern due to the effect of climate change

    HISTOPATHOLOGICAL FINDINGS IN SYSTEMIC SCLEROSIS-RELATED MYOPATHY: FIBROSIS AND MICROANGIOPATHY

    Get PDF
    Objectives: The objective of this study was to identify specific histopathological features of skeletal muscle involvement in systemic sclerosis (SSc) patients. Methods: A total of 35 out of 112 SSc-patients (32%, including 81% female and 68% diffuse scleroderma) presenting clinical, biological and electromyographic (EMG) features of muscle weakness, were included. Patients underwent vastus lateralis biopsy, assessed for individual pathologic features including fibrosis [type I collagen (Coll-I), transforming growth factor ÎČ (TGF-ÎČ)], microangiopathy [cluster of differentiation 31 (CD31), pro-angiogenic vascular endothelial growth factor A (VEGF-A), anti-angiogenic VEGF-A165b], immune/ inflammatory response [CD4, CD8, CD20, human leucocyte antigens ABC (HLA-ABC)], and membranolytic attack complex (MAC). SSc biopsies were compared with biopsies of (n = 35) idiopathic inflammatory myopathies (IIMs) and to (n = 35) noninflammatory myopathies (NIMs). Ultrastructural abnormalities of SSc myopathy were also analyzed by transmission electron microscopy (TEM). Results: Fibrosis in SSc myopathy (81%) is higher compared with IIM (32%, p &lt; 0.05) and with NIM (18%, p &lt; 0.05). Vascular involvement is dominant in SSc muscle (92%), and in IIM (78%) compared with NIM (21%, p &lt; 0.05). In particular, CD31 shows loss of endomysial vessels in SSc myopathy compared with IIM (p &lt; 0.05) and with NIM (p &lt; 0.01). VEGF-A is downregulated in SSc myopathy compared with IIM (p &lt; 0.05) and NIM (p &lt; 0.05). Conversely, VEGF-A165b is upregulated in SSc myopathy. The SSc immune/inflammatory response suggested humoral process with majority (85%) HLA-ABC fibral neoexpression and complement deposits on endomysial capillaries MAC, compared with IIM (p &lt; 0.05), characterized by CD4+/CD8+/B-cell infiltrate, and NIM (p &lt; 0.05). TEM analysis showed SSc vascular alterations consisting of thickening and lamination of basement membrane and endothelial cell ‘swelling’ coupled to endomysial/perimysial fibrosis. Conclusions: Fibrosis, microangiopathy and humoral immunity are predominant in SSc myopathy, even if it is difficult to identify specific histopathological hallmarks of muscle involvement in SSc, since they could be present also in other (IIM/NIM) myopathies. © 2016, © The Author(s), 2016

    Dissolved organic matter dynamics in the pristine Krka River estuary (Croatia)

    Get PDF
    The karstic Krka River is characterized by having lower dissolved organic carbon (DOC) concentrations (~30 ÎŒM) than coastal seawater (~60 ÎŒM). This peculiarity, together with the pristine nature of this area, makes the Krka River estuary a natural laboratory where it is possible to discriminate among the different dissolved organic matter (DOM) sources (riverine, marine and produced in-situ) and to study the main processes of DOM production and removal. The hypothesis behind this work is that in winter, due to the high discharge of the river, most of the DOM has a terrestrial signature, whereas in summer autochthonous DOM compose the main fraction of the DOM pool because of the reduced discharge, the high temperature and primary production. Our data shows that DOM in the river mainly consists of terrestrial molecules, as suggested by the high chromophoric content and low spectral slope (S275–295) values, as well by the predominance of humic-like substances. DOM in the seawater features the concentration and optical properties of the “typical” marine DOM from open sea waters. In summer, low riverine discharge and high temperature promote the intense biological activity, with an increase in DOC concentrations of up to 148 ÎŒM, resulting in a non-conservative behavior of DOM in the estuary. The high stratification combined with a decoupling between production and removal processes can explain the observed DOM accumulation. In the bottom layer DOM was released and quickly removed when oxygen was available, whereas in hypoxic waters the production of DOC, chromophoric DOM (CDOM) and fluorescent DOM (FDOM) was linearly related to oxygen consumption. Our work highlights the need of further studies combining chemical and biological information in order to gain new insights into the main processes responsible for DOM dynamics in this system

    DOM Biological Lability in an Estuarine System in Two Contrasting Periods

    No full text
    International audienceEstuarine processes play a key role in determining the amount and quality of land-derived dissolved organic matter (DOM) reaching the oceans. Microbial-mediated reactions can affect the concentration, quality, and bioavailability of DOM within an estuary. In this study, we investigated biological DOM removal in a small estuary and its variability in two contrasting seasons (spring and autumn) characterized by natural differences in the concentration and quality of the riverine DOM. Two incubation experiments were carried out using natural DOM and heterotrophic prokaryotes community collected at the estuary in March and September. Dissolved organic carbon (DOC) concentration, DOM fluorescence, and the heterotrophic prokaryotes abundance (HPA) showed marked differences between the two seasons. These parameters were followed through time for up to two months. Despite the marked differences in the initial conditions, the DOC removal rates were surprisingly similar in the two periods (16 ”M DOC month −1 in March and 18 ”M DOC month −1 in September), with the biggest removal in the first 48 h. The trend of fluorescent DOM (FDOM) during the incubation showed marked differences between the two periods. In March, the net removal of all the FDOM components was observed consistently with the decrease in DOC; whereas, in September, the net production of humic-like substances was observed
    corecore