6,081 research outputs found

    Detection of entanglement in ultracold lattice gases

    Full text link
    We propose the use of quantum polarization spectroscopy for detecting multi-particle entanglement of ultracold atoms in optical lattices. This method, based on a light-matter interface employing the quantum Farady effect, allows for the non destructive measurement of spin-spin correlations. We apply it to the specific example of a one dimensional spin chain and reconstruct its phase diagram using the light signal, readily measurable in experiments with ultracold atoms. Interestingly, the same technique can be extended to detect quantum many-body entanglement in such systems.Comment: Submitted to the Special Issue: "Strong correlations in Quantum Gases" in The Journal of Low Temperature Physic

    Genuine quantum correlations in quantum many-body systems: a review of recent progress

    Full text link
    Quantum information theory has considerably helped in the understanding of quantum many-body systems. The role of quantum correlations and in particular, bipartite entanglement, has become crucial to characterise, classify and simulate quantum many body systems. Furthermore, the scaling of entanglement has inspired modifications to numerical techniques for the simulation of many-body systems leading to the, now established, area of tensor networks. However, the notions and methods brought by quantum information do not end with bipartite entanglement. There are other forms of correlations embedded in the ground, excited and thermal states of quantum many-body systems that also need to be explored and might be utilised as potential resources for quantum technologies. The aim of this work is to review the most recent developments regarding correlations in quantum many-body systems focussing on multipartite entanglement, quantum nonlocality, quantum discord, mutual information but also other non classical measures of correlations based on quantum coherence. Moreover, we also discuss applications of quantum metrology in quantum many-body systems.Comment: Review. Close to published version. Comments are welcome! Please write an email to g.dechiara[(at)]qub.ac.u

    Thermometry Precision in Strongly Correlated Ultracold Lattice Gases

    Get PDF
    The precise knowledge of the temperature of an ultracold lattice gas simulating a strongly correlated system is a question of both, fundamental and technological importance. Here, we address such question by combining tools from quantum metrology together with the study of the quantum correlations embedded in the system at finite temperatures. Within this frame we examine the spin-1/21/2 XY chain, first estimating, by means of the quantum Fisher information, the lowest attainable bound on the temperature precision. We then address the estimation of the temperature of the sample from the analysis of correlations using a quantum non demolishing Faraday spectroscopy method. Finally, we demonstrate that for sufficiently low temperatures the proposed measurements are optimal to estimate accurately the temperature of the sample.Comment: 16 pages, 5 figure

    Optical eigenmode imaging

    Full text link
    We present an indirect imaging method that measures both amplitude and phase information from a transmissive target. Our method is based on an optical eigenmode decomposition of the light intensity and the first-order cross correlation between a target field and these eigenmodes. We demonstrate that such optical eigenmode imaging does not need any a priori knowledge of the imaging system and corresponds to a compressive full-field sampling leading to high image extraction efficiencies. Finally, we discuss the implications with respect to second-order correlation imaging

    Herpes simplex virus-type1 (HSV-1) impairs DNA repair in cortical neurons

    Get PDF
    Several findings suggest that Herpes simplex virus-1 (HSV-1) infection plays a role in the neurodegenerative processes that characterize Alzheimer's disease (AD), but the underlying mechanisms have yet to be fully elucidated. Here we show that HSV-1 productive infection in cortical neurons causes the accumulation of DNA lesions that include both single (SSBs) and double strand breaks (DSBs), which are reported to be implicated in the neuronal loss observed in neurodegenerative diseases. We demonstrate that HSV-1 downregulates the expression level of Ku80, one of the main components of non-homologous end joining (NHEJ), a major pathway for the repair of DSBs. We also provide data suggesting that HSV-1 drives Ku80 for proteasomal degradation and impairs NHEJ activity, leading to DSB accumulation. Since HSV-1 usually causes life-long recurrent infections, it is possible to speculate that cumulating damages, including those occurring on DNA, may contribute to virus induced neurotoxicity and neurodegeneration, further suggesting HSV-1 as a risk factor for neurodegenerative conditions

    Long-range multipartite entanglement close to a first order quantum phase transition

    Get PDF
    We provide insight in the quantum correlations structure present in strongly correlated systems beyond the standard framework of bipartite entanglement. To this aim we first exploit rotationally invariant states as a test bed to detect genuine tripartite entanglement beyond the nearest-neighbor in spin-1/2 models. Then we construct in a closed analytical form a family of entanglement witnesses which provides a sufficient condition to determine if a state of a many-body system formed by an arbitrary number of spin-1/2 particles possesses genuine tripartite entanglement, independently of the details of the model. We illustrate our method by analyzing in detail the anisotropic XXZ spin chain close to its phase transitions, where we demonstrate the presence of long range multipartite entanglement near the critical point and the breaking of the symmetries associated to the quantum phase transition.Comment: 6 pages, 3 figures, RevTeX 4, the abstract was changed and the manuscript was extended including the contents of the previous appendix

    A novel method to titrate Herpes simplex virus-1 (HSV-1) using laser-based scanning of near-infrared fluorophores conjugated antibodies

    Get PDF
    Among several strategies used for Herpes simplex virus (HSV) detection in biological specimens, standard plaque assay (SPA) remains the most reliable method to evaluate virus infectivity and quantify viral replication. However, it is a manual procedure, thereby affected by operator subjectivity, and it may be particularly laborious for multiple sample analysis. Here we describe an innovative method to perform the titration of HSV type 1 (HSV-1) in different samples, using the “In-Cell WesternTM” Assay (ICW) from LI-COR, a quantitative immunofluorescence assay that exploits laser-based scanning of near infrared (NIR). In particular, we employed NIR-immunodetection of viral proteins to monitor foci of HSV-1 infection in cell monolayers, and exploited an automated detection of their fluorescence intensity to evaluate virus titre. This innovative method produced similar and superimposable values compared to SPA, but it is faster and can be performed in 96 well plate, thus allowing to easily and quickly analyze and quantify many samples in parallel. These features make our method particularly suitable for the screening and characterization of antiviral compounds, as we demonstrated by testing acyclovir (ACV), the main anti-HSV-1 drug. Moreover, we developed a new data analysis system that allowed to overcome potential bias due to unspecific florescence signals, thus improving data reproducibility. Overall, our method may represents a useful tool for both clinical and research purposes

    Intragenic transcriptional cis-activation of the human immunodeficiency virus 1 does not result in allele-specific inhibition of the endogenous gene

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The human immunodeficiency virus type 1 (HIV-1) favors integration in active genes of host chromatin. It is believed that transcriptional interference of the viral promoter over the endogenous gene or vice versa might occur with implications in HIV-1 post-integrative transcriptional latency.</p> <p>Results</p> <p>In this work a cell line has been transduced with a HIV-based vector and selected for Tat-inducible expression. These cells were found to carry a single silent integration in sense orientation within the second intron of the <it>HMBOX1 </it>gene. The HIV-1 Tat transactivator induced the viral LTR and repressed <it>HMBOX1 </it>expression independently of vector integration. Instead, single-cell quantitative <it>in situ </it>hybridization revealed that allele-specific transcription of <it>HMBOX1 </it>carrying the integrated provirus was not affected by the transactivation of the viral LTR in <it>cis</it>.</p> <p>Conclusion</p> <p>A major observation of the work is that the HIV-1 genome has inserted in genes that are also repressed by Tat and this could be an advantage for the virus during transcriptional reactivation. In addition, it has also been observed that transcription of the provirus and of the endogenous gene in which it is integrated may coexist at the same time in the same genomic location.</p

    Advanced Label-Free Optical Methods for Spermatozoa Quality Assessment and Selection

    Get PDF
    Current in vitro fertilization (IVF) techniques require a severe selection of sperm, generally based on concentration, morphology, motility, and DNA integrity. Since routinely separation methods may damage the viability of the sperm cell, there is a growing interest in providing a method for noninvasively analyzing spermatozoa taking into account all those parameters. This chapter first reviews the state-of-the-art of label-free sperm cell imaging for IVF, highlighting the limitations of the used techniques. Then, our innovative approach combining Raman spectroscopy and digital holography will be described and its advantages detailed. These include the ability to perform a simultaneous and correlative morphological and biochemical analysis of sperm cells, without labeling, in a fast and reliable way. Finally, the difficulty in reaching clinical use will be discussed, as well as the possible solutions offered by new technological improvements
    • …
    corecore