7,325 research outputs found

    Study of B→K(∗)ℓ+ℓ−B\to K^{(*)} \ell^+\ell^- Decays in the Family Non-universal Z′Z' Models

    Full text link
    In a combined investigation of the B→K(∗)ℓ+ℓ−B\to K^{(*)}\ell^+\ell^- decays, constraints on the related couplings in family non-universal Z′Z^{\prime} models are derived. We find that within the allowed parameter space, the recently observed forward-backward asymmetry in the B→K∗ℓ+ℓ−B\to K^*\ell^+\ell^- decay can be explained, by flipping the signs of the Wilson coefficients C9effC_9^{\rm eff} and C10C_{10}. With the obtained constraints, we also calculate the branching ratio of the Bs→μ+μ−B_s\to\mu^+\mu^- decay. The upper bound of our prediction is near the upper bound given by CDF Collaboration recently.Comment: 19 pages, 4 figures, some errors corrected; Journal versio

    Zero differential resistance in two-dimensional electron systems at large filling factors

    Full text link
    We report on a state characterized by a zero differential resistance observed in very high Landau levels of a high-mobility two-dimensional electron system. Emerging from a minimum of Hall field-induced resistance oscillations at low temperatures, this state exists over a continuous range of magnetic fields extending well below the onset of the Shubnikov-de Haas effect. The minimum current required to support this state is largely independent on the magnetic field, while the maximum current increases with the magnetic field tracing the onset of inter-Landau level scattering

    Unique gap structure and symmetry of the charge density wave in single-layer VSe2_2

    Full text link
    Single layers of transition metal dichalcogenides (TMDCs) are excellent candidates for electronic applications beyond the graphene platform; many of them exhibit novel properties including charge density waves (CDWs) and magnetic ordering. CDWs in these single layers are generally a planar projection of the corresponding bulk CDWs because of the quasi-two-dimensional nature of TMDCs; a different CDW symmetry is unexpected. We report herein the successful creation of pristine single-layer VSe2_2, which shows a (7×3\sqrt7 \times \sqrt3) CDW in contrast to the (4 ×\times 4) CDW for the layers in bulk VSe2_2. Angle-resolved photoemission spectroscopy (ARPES) from the single layer shows a sizable (7×3\sqrt7 \times \sqrt3) CDW gap of ∼\sim100 meV at the zone boundary, a 220 K CDW transition temperature twice the bulk value, and no ferromagnetic exchange splitting as predicted by theory. This robust CDW with an exotic broken symmetry as the ground state is explained via a first-principles analysis. The results illustrate a unique CDW phenomenon in the two-dimensional limit

    Non-linear magnetotransport in microwave-illuminated two-dimensional electron systems

    Full text link
    We study magnetoresistivity oscillations in a high-mobility two-dimensional electron system subject to both microwave and dc electric fields. First, we observe that the oscillation amplitude is a periodic function of the inverse magnetic field and is strongly suppressed at microwave frequencies near half-integers of the cyclotron frequency. Second, we obtain a complete set of conditions for the differential resistivity extrema and saddle points. These findings indicate the importance of scattering without microwave absorption and a special role played by microwave-induced scattering events antiparallel to the electric field.Comment: 4 pages, 4 figure

    PAN AIR: A computer program for predicting subsonic or supersonic linear potential flows about arbitrary configurations using a higher order panel method. Volume 4: Maintenance document (version 1.1)

    Get PDF
    The Maintenance Document is a guide to the PAN AIR software system, a system which computes the subsonic or supersonic linear potential flow about a body of nearly arbitrary shape, using a higher order panel method. The document describes the over-all system and each program module of the system. Sufficient detail is given for program maintenance, updating and modification. It is assumed that the reader is familiar with programming and CDC (Control Data Corporation) computer systems. The PAN AIR system was written in FORTRAN 4 language except for a few COMPASS language subroutines which exist in the PAN AIR library. Structured programming techniques were used to provide code documentation and maintainability. The operating systems accommodated are NOS 1.2, NOS/BE and SCOPE 2.1.3 on the CDC 6600, 7600 and Cyber 175 computing systems. The system is comprised of a data management system, a program library, an execution control module and nine separate FORTRAN technical modules. Each module calculates part of the posed PAN AIR problem. The data base manager is used to communicate between modules and within modules. The technical modules must be run in a prescribed fashion for each PAN AIR problem. In order to ease the problem of supplying the many JCL cards required to execute the modules, a separate module called MEC (Module Execution Control) was created to automatically supply most of the JCL cards. In addition to the MEC generated JCL, there is an additional set of user supplied JCL cards to initiate the JCL sequence stored on the system

    Damping in 2D and 3D dilute Bose gases

    Full text link
    Damping in 2D and 3D dilute gases is investigated using both the hydrodynamical approach and the Hartree-Fock-Bogoliubov (HFB) approximation . We found that the both methods are good for the Beliaev damping at zero temperature and Landau damping at very low temperature, however, at high temperature, the hydrodynamical approach overestimates the Landau damping and the HFB gives a better approximation. This result shows that the comparison of the theoretical calculation using the hydrodynamical approach and the experimental data for high temperature done by Vincent Liu (PRL {\bf21} 4056 (1997)) is not proper. For two-dimensional systems, we show that the Beliaev damping rate is proportional to k3k^3 and the Landau damping rate is proportional to T2 T^2 for low temperature and to TT for high temperature. We also show that in two dimensions the hydrodynamical approach gives the same result for zero temperature and for low temperature as HFB, but overestimates the Landau damping for high temperature.Comment: 11 pages, 4 figure

    Exposing errors related to weak memory in GPU applications

    Get PDF
    © 2016 ACM.We present the systematic design of a testing environment that uses stressing and fuzzing to reveal errors in GPU applications that arise due to weak memory effects. We evaluate our approach on seven GPUS spanning three NVIDIA architectures, across ten CUDA applications that use fine-grained concurrency. Our results show that applications that rarely or never exhibit errors related to weak memory when executed natively can readily exhibit these errors when executed in our testing environment. Our testing environment also provides a means to help identify the root causes of such errors, and automatically suggests how to insert fences that harden an application against weak memory bugs. To understand the cost of GPU fences, we benchmark applications with fences provided by the hardening strategy as well as a more conservative, sound fencing strategy
    • …
    corecore