42 research outputs found

    MobileTL: On-device Transfer Learning with Inverted Residual Blocks

    Full text link
    Transfer learning on edge is challenging due to on-device limited resources. Existing work addresses this issue by training a subset of parameters or adding model patches. Developed with inference in mind, Inverted Residual Blocks (IRBs) split a convolutional layer into depthwise and pointwise convolutions, leading to more stacking layers, e.g., convolution, normalization, and activation layers. Though they are efficient for inference, IRBs require that additional activation maps are stored in memory for training weights for convolution layers and scales for normalization layers. As a result, their high memory cost prohibits training IRBs on resource-limited edge devices, and making them unsuitable in the context of transfer learning. To address this issue, we present MobileTL, a memory and computationally efficient on-device transfer learning method for models built with IRBs. MobileTL trains the shifts for internal normalization layers to avoid storing activation maps for the backward pass. Also, MobileTL approximates the backward computation of the activation layer (e.g., Hard-Swish and ReLU6) as a signed function which enables storing a binary mask instead of activation maps for the backward pass. MobileTL fine-tunes a few top blocks (close to output) rather than propagating the gradient through the whole network to reduce the computation cost. Our method reduces memory usage by 46% and 53% for MobileNetV2 and V3 IRBs, respectively. For MobileNetV3, we observe a 36% reduction in floating-point operations (FLOPs) when fine-tuning 5 blocks, while only incurring a 0.6% accuracy reduction on CIFAR10. Extensive experiments on multiple datasets demonstrate that our method is Pareto-optimal (best accuracy under given hardware constraints) compared to prior work in transfer learning for edge devices

    Isoflavones prevent bone loss following ovariectomy in young adult rats

    Get PDF
    Soy protein, a rich source of phytoestrogens, exhibit estrogen-type bioactivity. The purpose of this study was to determine if ingestion of isoflavones before ovariectomy can prevent bone loss following ovariectomy. Twenty-four nulliparous Wistar rats were randomly divided into four groups. In the normal diet groups, a sham operation was performed on Group A, while ovariectomy was performed on Group B. For Groups C and D, all rats were fed with an isoflavone-rich (25 mg/day) diet for one month, then bilateral ovariectomy were performed. In the rats in Group C, a normal diet was begun following the ovariectomy. The rats in Groups D continued to receive the isoflavone-rich diet for two additional months postoperatively. All rats were sacrificed 60 days after surgery. The weight of bone ash of the long bones and whole lumbar spine were determined. A histological study of cancellous bone was done and biochemical indices of skeletal metabolism were performed and analyzed. The markers of bone metabolism exhibited no significant changes. When compared with the sham-operated rats fed a normal diet, the bone mass of ovariectomized rats decreased significantly; pre-ovariectomy ingestion of an isoflavone-rich diet did not prevent bone loss. The bone mass of rats treated with an isoflavone-rich diet for three months was higher than controls two months after ovariectomy

    Caffeic Acid Derivatives Inhibit the Growth of Colon Cancer: Involvement of the PI3-K/Akt and AMPK Signaling Pathways

    Get PDF
    The aberrant regulation of phosphatidylinositide 3-kinases (PI3-K)/Akt, AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (m-TOR) signaling pathways in cancer has prompted significant interest in the suppression of these pathways to treat cancer. Caffeic acid (CA) has been reported to possess important anti-inflammatory actions. However, the molecular mechanisms by which CA derivatives including caffeic acid phenethyl ester (CAPE) and caffeic acid phenylpropyl ester (CAPPE), exert inhibitory effects on the proliferation of human colorectal cancer (CRC) cells have yet to be elucidated

    Women with endometriosis have higher comorbidities: Analysis of domestic data in Taiwan

    Get PDF
    AbstractEndometriosis, defined by the presence of viable extrauterine endometrial glands and stroma, can grow or bleed cyclically, and possesses characteristics including a destructive, invasive, and metastatic nature. Since endometriosis may result in pelvic inflammation, adhesion, chronic pain, and infertility, and can progress to biologically malignant tumors, it is a long-term major health issue in women of reproductive age. In this review, we analyze the Taiwan domestic research addressing associations between endometriosis and other diseases. Concerning malignant tumors, we identified four studies on the links between endometriosis and ovarian cancer, one on breast cancer, two on endometrial cancer, one on colorectal cancer, and one on other malignancies, as well as one on associations between endometriosis and irritable bowel syndrome, one on links with migraine headache, three on links with pelvic inflammatory diseases, four on links with infertility, four on links with obesity, four on links with chronic liver disease, four on links with rheumatoid arthritis, four on links with chronic renal disease, five on links with diabetes mellitus, and five on links with cardiovascular diseases (hypertension, hyperlipidemia, etc.). The data available to date support that women with endometriosis might be at risk of some chronic illnesses and certain malignancies, although we consider the evidence for some comorbidities to be of low quality, for example, the association between colon cancer and adenomyosis/endometriosis. We still believe that the risk of comorbidity might be higher in women with endometriosis than that we supposed before. More research is needed to determine whether women with endometriosis are really at risk of these comorbidities

    Deviating from the Recommended Torque on Set Screws Can Reduce the Stability and Fatigue Life of Pedicle Screw Fixation Devices

    No full text
    Background and Objectives: Using an appropriate torque to tighten set screws ensures the long-term stability of spinal posterior fixation devices. However, the recommended torque often varies between different devices and some devices do not state a recommended torque level. The purpose of this study is to evaluate the effect of set screw torque on the overall construct stability and fatigue life. Materials and Methods: Two commercial pedicle screw systems with different designs for the contact interface between the set screw and rod (Group A: plane contact, Group B: line contact) were assembled using torque wrenches provided with the devices to insert the set screws and tighten to the device specifications. The axial gipping capacity and dynamic mechanical stability of each bilateral construct were assessed in accordance with ASTM F1798 and ASTM F1717. Results: Increasing or decreasing the torque on the set screw by 1 Nm from the recommended level did not have a significant effect on the axial gripping capacity or fatigue strength of Group A (p > 0.05). For Group B, over-tightening the set screw by 1 Nm did cause a significant reduction in the fatigue strength. Conclusions: Excessive torque can damage the rod surface and cause premature failure. When insertion using a manual driver is preferred, a plane contact interface between the set screw and rod can reduce damage to the rod surface when the set screw is over-torqued

    Assessment of Spinal Stability after Discectomy Followed by Annulus Fibrosus Repair and Augmentation of the Nucleus Pulposus: A Finite Element Study

    No full text
    Lumbar disc herniation (LDH) is a common condition which can lead to back pain. Although surgical treatments for LDH are well established, complications such as spinal instability and narrowing of adjacent facet joints are still frequently reported. The purpose of this study was to use finite element models to evaluate the stability of the L3–L4 segment after conservative or aggressive percutaneous transforaminal endoscopic discectomy (PTED) with and without an artificial material filler to correct LDH. Compared to the intact model, aggressive PTED reduced the stability of the segment (increased ROM) and narrowed the space between facet joints in the medial/lateral (ML) direction during flexion (maximum 6.7 degrees change in ROM and 90.5% spacing between facet joints), extension (maximum 2.1 degrees and 38.6%), and axial rotation (maximum 4.2 degrees and 90.1%). Aggressive PTED had a similar effect in the anterior/posterior (AP) direction during lateral bending (maximum 2.0 degrees and 44.2%). Augmenting the nucleus pulposus with a polyurethane filler after aggressive PTED improved spinal stability in both the ML and AP directions in all simulated motions, with results similar to the intact model. However, using a hydrogel filler did little to stabilize the spine, likely because the material is too soft to support the heavy, sustained loading. In conclusion, this study found that if an aggressive discectomy is required, augmenting the nucleus pulposus with a PU filler provides sufficient support to stabilize the spine, while hydrogel fillers offer little support

    Assessment of Spinal Stability after Discectomy Followed by Annulus Fibrosus Repair and Augmentation of the Nucleus Pulposus: A Finite Element Study

    No full text
    Lumbar disc herniation (LDH) is a common condition which can lead to back pain. Although surgical treatments for LDH are well established, complications such as spinal instability and narrowing of adjacent facet joints are still frequently reported. The purpose of this study was to use finite element models to evaluate the stability of the L3–L4 segment after conservative or aggressive percutaneous transforaminal endoscopic discectomy (PTED) with and without an artificial material filler to correct LDH. Compared to the intact model, aggressive PTED reduced the stability of the segment (increased ROM) and narrowed the space between facet joints in the medial/lateral (ML) direction during flexion (maximum 6.7 degrees change in ROM and 90.5% spacing between facet joints), extension (maximum 2.1 degrees and 38.6%), and axial rotation (maximum 4.2 degrees and 90.1%). Aggressive PTED had a similar effect in the anterior/posterior (AP) direction during lateral bending (maximum 2.0 degrees and 44.2%). Augmenting the nucleus pulposus with a polyurethane filler after aggressive PTED improved spinal stability in both the ML and AP directions in all simulated motions, with results similar to the intact model. However, using a hydrogel filler did little to stabilize the spine, likely because the material is too soft to support the heavy, sustained loading. In conclusion, this study found that if an aggressive discectomy is required, augmenting the nucleus pulposus with a PU filler provides sufficient support to stabilize the spine, while hydrogel fillers offer little support

    MobileTL: On-Device Transfer Learning with Inverted Residual Blocks

    No full text
    Transfer learning on edge is challenging due to on-device limited resources. Existing work addresses this issue by training a subset of parameters or adding model patches. Developed with inference in mind, Inverted Residual Blocks (IRBs) split a convolutional layer into depthwise and pointwise convolutions, leading to more stacking layers, e.g., convolution, normalization, and activation layers. Though they are efficient for inference, IRBs require that additional activation maps are stored in memory for training weights for convolution layers and scales for normalization layers. As a result, their high memory cost prohibits training IRBs on resource-limited edge devices, and making them unsuitable in the context of transfer learning. To address this issue, we present MobileTL, a memory and computationally efficient on-device transfer learning method for models built with IRBs. MobileTL trains the shifts for internal normalization layers to avoid storing activation maps for the backward pass. Also, MobileTL approximates the backward computation of the activation layer (e.g., Hard-Swish and ReLU6) as a signed function which enables storing a binary mask instead of activation maps for the backward pass. MobileTL fine-tunes a few top blocks (close to output) rather than propagating the gradient through the whole network to reduce the computation cost. Our method reduces memory usage by 46% and 53% for MobileNetV2 and V3 IRBs, respectively. For MobileNetV3, we observe a 36% reduction in floating-point operations (FLOPs) when fine-tuning 5 blocks, while only incurring a 0.6% accuracy reduction on CIFAR10. Extensive experiments on multiple datasets demonstrate that our method is Pareto-optimal (best accuracy under given hardware constraints) compared to prior work in transfer learning for edge devices

    Monostotic Vertebral Paget's Disease of the Lumbar Spine

    Get PDF
    Paget's disease in the Far East is quite rare. Age at diagnosis is usually greater than 50 years, and the disease typically affects the spine. Most patients are usually diagnosed with Paget's disease following radiographic examination for other purposes. It usually occurs at multiple vertebral levels, with only 10–25% of vertebral Paget's disease being monostotic. The disease rarely causes neurologic complications resulting from compression of intraspinal nerve tissue. Here, we present 2 cases of monostotic vertebral Paget's disease of the third lumbar vertebra. The first patient, who may be the first documented case of Paget's disease in the lumbar spine with progressive neurologic deficiency in an Asian population, received decompressive laminectomy due to marked spinal stenosis with neurologic deficits. The symptoms were greatly relieved following surgery, and ambulatory ability was restored. The second patient was diagnosed with Paget's disease following surgical biopsy. He remained asymptomatic at the most recent follow-up
    corecore