401 research outputs found

    Facile Sulfation of C60 Using P2O5 as an Oxidation Promoter

    Get PDF
    [[abstract]]Reactivity of C60 molecules toward the oxidative sulfation reaction induced by H2SO4–SO3 is highly enhanced by P2O5, leading to hexacyclosulfated fullerene intermediates which are converted to dodecahydroxyfullerenes upon hydrolysis.[[journaltype]]國外[[booktype]]紙本[[countrycodes]]GB

    Synthesis of Photoresponsive Dual NIR Two-Photon Absorptive [60]Fullerene Triads and Tetrads

    Get PDF
    Broadband nonlinear optical (NLO) organic nanostructures exhibiting both ultrafast photoresponse and a large cross-section of two-photon absorption throughout a wide NIR spectrum may make them suitable for use as nonlinear biophotonic materials. We report here the synthesis and characterization of two C60-(antenna)x analogous compounds as branched triad C60(>DPAF-C18)(>CPAF-C2M) and tetrad C60(>DPAF-C18)(>CPAF-C2M)2 nanostructures. These compounds showed approximately equal extinction coefficients of optical absorption over 400–550 nm that corresponds to near-IR two-photon based excitation wavelengths at 780–1,100 nm. Accordingly, they may be utilized as potential precursor candidates to the active-core structures of photosensitizing nanodrugs for 2γ-PDT in the biological optical window of 800–1,050 nm.United States. Air Force Office of Scientific Research (grant number FA9550-09-1-0380)United States. Air Force Office of Scientific Research (Grant FA9550-09-1-0183)National Institutes of Health (U.S.) (grant number 4R01CA137108)National Institutes of Health (U.S.) (NIH R01AI058075

    Can nanotechnology potentiate photodynamic therapy?

    Get PDF
    Photodynamic therapy (PDT) uses the combination of nontoxic dyes and harmless visible light to produce reactive oxygen species that can kill cancer cells and infectious microorganisms. Due to the tendency of most photosensitizers (PS) to be poorly soluble and to form nonphotoactive aggregates, drug-delivery vehicles have become of high importance. The nanotechnology revolution has provided many examples of nanoscale drug-delivery platforms that have been applied to PDT. These include liposomes, lipoplexes, nanoemulsions, micelles, polymer nanoparticles (degradable and nondegradable), and silica nanoparticles. In some cases (fullerenes and quantum dots), the actual nanoparticle itself is the PS. Targeting ligands such as antibodies and peptides can be used to increase specificity. Gold and silver nanoparticles can provide plasmonic enhancement of PDT. Two-photon excitation or optical upconversion can be used instead of one-photon excitation to increase tissue penetration at longer wavelengths. Finally, after sections on in vivo studies and nanotoxicology, we attempt to answer the title question, “can nanotechnology potentiate PDT?”National Institutes of Health (U.S.) (RO1 AI050875)United States. Air Force (Medical Free Electron Laser Program (FA9550-04-1-0079)

    Magnetospheric Accretion and Ejection of Matter in Resistive Magnetohydrodynamic Simulations

    Full text link
    The ejection of matter in the close vicinity of a young stellar object is investigated, treating the accretion disk as a gravitationally bound reservoir of matter. By solving the resistive MHD equations in 2D axisymmetry using our version of the Zeus-3D code with newly implemented resistivity, we study the effect of magnetic diffusivity in the magnetospheric accretion-ejection mechanism. Physical resistivity was included in the whole computational domain so that reconnection is enabled by the physical as well as the numerical resistivity. We show, for the first time, that quasi-stationary fast ejecta of matter, which we call {\em micro-ejections}, of small mass and angular momentum fluxes, can be launched from a purely resistive magnetosphere. They are produced by a combination of pressure gradient and magnetic forces, in presence of ongoing magnetic reconnection along the boundary layer between the star and the disk, where a current sheet is formed. Mass flux of micro-ejection increases with increasing magnetic field strength and stellar rotation rate, and is not dependent on the disk to corona density ratio and amount of resistivity.Comment: 18 pages, many revisions from previous version, accepted in Ap

    Time series modeling of cell cycle exit identifies Brd4 dependent regulation of cerebellar neurogenesis

    Get PDF
    Cerebellar neuronal progenitors undergo a series of divisions before irreversibly exiting the cell cycle and differentiating into neurons. Dysfunction of this process underlies many neurological diseases including ataxia and the most common pediatric brain tumor, medulloblastoma. To better define the pathways controlling the most abundant neuronal cells in the mammalian cerebellum, cerebellar granule cell progenitors (GCPs), we performed RNA-sequencing of GCPs exiting the cell cycle. Time-series modeling of GCP cell cycle exit identified downregulation of activity of the epigenetic reader protein Brd4. Brd4 binding to the Gli1 locus is controlled by Casein Kinase 1δ (CK1 δ)-dependent phosphorylation during GCP proliferation, and decreases during GCP cell cycle exit. Importantly, conditional deletion of Brd4 in vivo in the developing cerebellum induces cerebellar morphological deficits and ataxia. These studies define an essential role for Brd4 in cerebellar granule cell neurogenesis and are critical for designing clinical trials utilizing Brd4 inhibitors in neurological indications

    Synthesis and Photodynamic Effect of New Highly Photostable Decacationically Armed [60]- and [70]Fullerene Decaiodide Monoadducts To Target Pathogenic Bacteria and Cancer Cells

    Get PDF
    Novel water-soluble decacationically armed C-60 and C-70 decaiodide monoadducts, C-60- and C-70[>M(C3N6+C3)(2)], were synthesized, characterized, and applied as photosensitizers and potential nano-PDT agents against pathogenic bacteria and cancer cells. A high number of cationic charges per fullerene cage and H-bonding moieties were designed for rapid binding to the anionic residues displayed on the outer parts of bacterial cell walls. In the presence of a high number of electron-donating iodide anions as parts of quaternary ammonium salts in the arm region, we found that C-70[>M(C3N6+C3)(2)] produced more HO center dot than C-60[>M(C3N6+C3)(2)], in addition to O-1(2). This finding offers an explanation of the preferential killing of Gram-positive and Gram-negative bacteria by C-60[>M(C3N6+C3)(2)] and C-70[>M(C3N6+C3)(2)], respectively. The hypothesis is that O-1(2) can diffuse more easily into porous cell walls of Gram-positive bacteria to reach sensitive sites, while the less permeable Gram-negative bacterial cell wall needs the more reactive HO center dot to cause real damage.National Institutes of Health (NIH) [1R01CA137108]National Institutes of Health (NIH

    Prescription characteristics of Xue-Fu-Zhu-Yu-Tang in pain management: a population-based study using the National Health Insurance Research Database in Taiwan

    Get PDF
    Objective: To explore the prevalence and distinctive features of Xue-Fu-Zhu-Yu-Tang (XFZYT) prescriptions by analyzing the National Health Insurance Research Database (NHIRD) to identify the specific medical problems for which XFZYT is prescribed.Methods: This nationwide, population-based, cross-sectional study included 109,073 XFZYT users and 532,848 XFZYT non-users among Chinese herbal product (CHP) users in NHIRD. Chi-squared tests were used to analyze disparities between the XFZYT user and XFZYT non-user cohorts, and the mean age was evaluated using the Wilcoxon rank-sum test. Logistic regression was used to compute the odds ratios (ORs) and 95% confidence intervals (95% CIs).Results: XFZYT was frequently used to treat pain. The top five conditions for which the Taiwanese traditional Chinese medicine (TCM) practitioners would prescribe XFZYT were chest pain; headache; myalgia and myositis; lumbago; and neuralgia, neuritis, and radiculitis.Conclusion: This study represents an inaugural comprehensive survey conducted on the utilization of XFZYT prescriptions among patients with diverse diseases. XFZYT is mostly used to treat pain conditions in Taiwan. Combined with the combination use of other CHPs, XFZYT is used to treat symptoms of the chest and respiratory system, soft tissue conditions, menstruation disorders, and joint and back discomfort. These results suggest that further clinical trials are warranted to verify the effects of XFZYT in pain management

    MicroRNAs in pulmonary arterial remodeling

    Get PDF
    Pulmonary arterial remodeling is a presently irreversible pathologic hallmark of pulmonary arterial hypertension (PAH). This complex disease involves pathogenic dysregulation of all cell types within the small pulmonary arteries contributing to vascular remodeling leading to intimal lesions, resulting in elevated pulmonary vascular resistance and right heart dysfunction. Mutations within the bone morphogenetic protein receptor 2 gene, leading to dysregulated proliferation of pulmonary artery smooth muscle cells, have been identified as being responsible for heritable PAH. Indeed, the disease is characterized by excessive cellular proliferation and resistance to apoptosis of smooth muscle and endothelial cells. Significant gene dysregulation at the transcriptional and signaling level has been identified. MicroRNAs are small non-coding RNA molecules that negatively regulate gene expression and have the ability to target numerous genes, therefore potentially controlling a host of gene regulatory and signaling pathways. The major role of miRNAs in pulmonary arterial remodeling is still relatively unknown although research data is emerging apace. Modulation of miRNAs represents a possible therapeutic target for altering the remodeling phenotype in the pulmonary vasculature. This review will focus on the role of miRNAs in regulating smooth muscle and endothelial cell phenotypes and their influence on pulmonary remodeling in the setting of PAH

    Implementation of exon arrays: alternative splicing during T-cell proliferation as determined by whole genome analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The contribution of alternative splicing and isoform expression to cellular response is emerging as an area of considerable interest, and the newly developed exon arrays allow for systematic study of these processes. We use this pilot study to report on the feasibility of exon array implementation looking to replace the 3' <it>in vitro </it>transcription expression arrays in our laboratory.</p> <p>One of the most widely studied models of cellular response is T-cell activation from exogenous stimulation. Microarray studies have contributed to our understanding of key pathways activated during T-cell stimulation. We use this system to examine whole genome transcription and alternate exon usage events that are regulated during lymphocyte proliferation in an attempt to evaluate the exon arrays.</p> <p>Results</p> <p>Peripheral blood mononuclear cells form healthy donors were activated using phytohemagglutinin, IL2 and ionomycin and harvested at 5 points over a 7 day period. Flow cytometry measured cell cycle events and the Affymetrix exon array platform was used to identify the gene expression and alternate exon usage changes. Gene expression changes were noted in a total of 2105 transcripts, and alternate exon usage identified in 472 transcript clusters. There was an overlap of 263 transcripts which showed both differential expression and alternate exon usage over time. Gene ontology enrichment analysis showed a broader range of biological changes in biological processes for the differentially expressed genes, which include cell cycle, cell division, cell proliferation, chromosome segregation, cell death, component organization and biogenesis and metabolic process ontologies. The alternate exon usage ontological enrichments are in metabolism and component organization and biogenesis. We focus on alternate exon usage changes in the transcripts of the spliceosome complex. The real-time PCR validation rates were 86% for transcript expression and 71% for alternate exon usage.</p> <p>Conclusions</p> <p>This study illustrates that the Exon array technology has the potential to provide information on both transcript expression and isoform usage, with very little increase in expense.</p
    corecore