162 research outputs found

    Remarks on Form Factor Bounds

    Full text link
    Improved model independent upper bounds on the weak transition form factors are derived using inclusive sum rules. Comparison of the new bounds with the old ones is made for the form factors h_{A_1} and h_V in B -> D* decays.Comment: 8 pages, 2 figures, title changed and typos corrected for journal publicatio

    Inclusive Quasi-Elastic Charged-Current Neutrino-Nucleus Reactions

    Get PDF
    The Quasi-Elastic (QE) contribution of the nuclear inclusive electron scattering model developed in Nucl. Phys. A627 (1997) 543 is extended to the study of electroweak Charged Current (CC) induced nuclear reactions, at intermediate energies of interest for future neutrino oscillation experiments. The model accounts for, among other nuclear effects, long range nuclear (RPA) correlations, Final State Interaction (FSI) and Coulomb corrections. Predictions for the inclusive muon capture in 12^{12}C and the reaction 12^{12}C (νμ,μ)X(\nu_\mu,\mu^-)X near threshold are also given. RPA correlations are shown to play a crucial role and their inclusion leads to one of the best existing simultaneous description of both processes, with accuracies of the order of 10-15% per cent for the muon capture rate and even better for the LSND measurement.Comment: 31 pages and 14 figures, accepted for publication as a regular article in Physical Review

    Power corrections in e+ e- --> pi+ pi-, K+ K- and B --> K pi, pi pi

    Get PDF
    CLEO-c measurements of the timelike form factors F_pi, F_K at \sqrt{s}=3.671 GeV provide a direct probe of power corrections (PC's) at energies near m_B. PC's in F_pi, F_K and B \to K pi, pi pi are separated into perturbative and soft parts. In F_pi, F_K the latter are \ge O(10) larger. A PC fit to the B \to K pi, pi pi data also yields a \ge O(10) soft-to-perturbative hierarchy for the QCD penguin PC's. Hence, both can be attributed to dominance of the soft-ovelap between energetic (approximately) back-to-back collinear partons, and consistency of the B\to K pi, pi pi fit with the Standard Model appears to be naturally realized. The CP asymmetries S_{K_s pi^0}, C_{K_s pi^0} are well determined, providing a clean test for new physics.Comment: 4 pages, 4 figures, version published in Eur. Phys. J. C; elaborated on the connection between power corrections in e+e- ->M1 M2 and the B-> M1 M2 QCD penguin amplitudes; removed speculation that soft-overlaps are much larger for PP than for VP and VV final states, this is not supported by a new analysis in preparatio

    BDsπB \to D_s \pi and the tree amplitude in Bπ+πB \to \pi^+ \pi^-

    Full text link
    The recently-observed decay B0Ds+πB^0 \to D_s^+ \pi^- is expected to proceed mainly by means of a tree amplitude in the factorization limit: B0π(W+)B^0 \to \pi^- {(W^+)}^*, (W+)Ds+{(W^+)}^* \to D_s^+. Under this assumption, we predict the corresponding contribution of the tree amplitude to B0π+πB^0 \to \pi^+ \pi^-. We indicate the needed improvements in data that will allow a useful estimate of this amplitude with errors comparable to those accompanying other methods. Since the factorization hypothesis for this process goes beyond that proved in most approaches, we also discuss independent tests of this hypothesis.Comment: 7 pages, LaTeX, 1 figure, to be submitted to Phys. Rev. D (Brief Reports

    Strong Phases and Factorization for Color Suppressed Decays

    Full text link
    We prove a factorization theorem in QCD for the color suppressed decays B0-> D0 M0 and B0-> D*0 M0 where M is a light meson. Both the color-suppressed and W-exchange/annihilation amplitudes contribute at lowest order in LambdaQCD/Q where Q={mb, mc, Epi}, so no power suppression of annihilation contributions is found. A new mechanism is given for generating non-perturbative strong phases in the factorization framework. Model independent predictions that follow from our results include the equality of the B0 -> D0 M0 and B0 -> D*0 M0 rates, and equality of non-perturbative strong phases between isospin amplitudes, delta(DM) = delta(D*M). Relations between amplitudes and phases for M=pi,rho are also derived. These results do not follow from large Nc factorization with heavy quark symmetry.Comment: 38 pages, 6 figs, typos correcte

    Two-Body Cabibbo-Suppressed Charmed Meson Decays

    Get PDF
    Singly-Cabibbo-suppressed decays of charmed particles governed by the quark subprocesses csusˉc \to s u \bar s and cdudˉc \to d u \bar d are analyzed using a flavor-topology approach, based on a previous analysis of the Cabibbo-favored decays governed by csudˉc \to s u \bar d. Decays to PPPP and PVPV, where PP is a pseudoscalar meson and VV is a vector meson, are considered. We include processes in which η\eta and η\eta ' are produced.Comment: 18 pages, latex, 2 figures, to be submitted to Phys. Rev.

    Charmless BPPB \to PP decays using flavor SU(3) symmetry

    Full text link
    The decays of BB mesons to a pair of charmless pseudoscalar (PP) mesons are analyzed within a framework of flavor SU(3). Symmetry breaking is taken into account in tree (TT) amplitudes through ratios of decay constants; exact SU(3) is assumed elsewhere. Acceptable fits to BππB \to \pi \pi and BKπB \to K \pi branching ratios and CP asymmetries are obtained with tree, color-suppressed (CC), penguin (PP), and electroweak penguin (PEWP_{EW}) amplitudes. Crucial additional terms for describing processes involving η\eta and η\eta' include a large flavor-singlet penguin amplitude (SS) as proposed earlier and a penguin amplitude PtuP_{tu} associated with intermediate tt and uu quarks. For the B+π+ηB^+ \to \pi^+ \eta' mode a term StuS_{tu} associated with intermediate tt and uu quarks also may be needed. Values of the weak phase γ\gamma are obtained consistent with an earlier analysis of BVPB \to VP decays, where VV denotes a vector meson, and with other analyses of CKM parameters.Comment: 26 pages, 1 figure. To be submitted to Phys. Rev. D. Reference update

    Z decays into light gluinos: a calculation based on unitarity

    Full text link
    The Z boson can decay to a pair of light gluinos through loop-mediated processes. Based on unitarity of the S-matrix, the imaginary part of the decay amplitude is computed in the presence of a light bottom squark. This imaginary part can provide useful information on the full amplitude. Implications are discussed for a recently proposed light gluino and light bottom squark scenario.Comment: 19 pages, LaTeX, 3 figures, submitted to Phys. Rev.

    Hadronic Charmed Meson Decays Involving Tensor Mesons

    Full text link
    Charmed meson decays into a pseudoscalar meson P and a tensor meson T are studied. The charm to tensor meson transition form factors are evaluated in the Isgur-Scora-Grinstein-Wise (ISGW) quark model. It is shown that the Cabibbo-allowed decay Ds+f2(1270)π+D_s^+\to f_2(1270)\pi^+ is dominated by the W-annihilation contribution and has the largest branching ratio in DTPD\to TP decays. We argue that the Cabibbo-suppressed mode D+f2(1270)π+D^+\to f_2(1270)\pi^+ should be suppressed by one order of magnitude relative to Ds+f2(1270)π+D_s^+\to f_2(1270)\pi^+. When the finite width effect of the tensor resonances is taken into account, the decay rate of DTPD\to TP is generally enhanced by a factor of 232\sim 3. Except for Ds+f2(1270)π+D_s^+\to f_2(1270)\pi^+, the predicted branching ratios of DTPD\to TP decays are in general too small by one to two orders of magnitude compared to experiment. However, it is very unlikely that the DTD\to T transition form factors can be enhanced by a factor of 353\sim 5 within the ISGW quark model to account for the discrepancy between theory and experiment. As many of the current data are still preliminary and lack sufficient statistic significance, more accurate measurements are needed to pin down the issue.Comment: 11 page

    Search for Top Quark FCNC Couplings in Z' Models at the LHC and CLIC

    Full text link
    The top quark is the heaviest particle to date discovered, with a mass close to the electroweak symmetry breaking scale. It is expected that the top quark would be sensitive to the new physics at the TeV scale. One of the most important aspects of the top quark physics can be the investigation of the possible anomalous couplings. Here, we study the top quark flavor changing neutral current (FCNC) couplings via the extra gauge boson Z' at the Large Hadron Collider (LHC) and the Compact Linear Collider (CLIC) energies. We calculate the total cross sections for the signal and the corresponding Standard Model (SM) background processes. For an FCNC mixing parameter x=0.2 and the sequential Z' mass of 1 TeV, we find the single top quark FCNC production cross sections 0.38(1.76) fb at the LHC with sqrt{s_{pp}}=7(14) TeV, respectively. For the resonance production of sequential Z' boson and decays to single top quark at the Compact Linear Collider (CLIC) energies, including the initial state radiation and beamstrahlung effects, we find the cross section 27.96(0.91) fb at sqrt{s_{e^{+}e^{-}}}=1(3) TeV, respectively. We make the analysis to investigate the parameter space (mixing-mass) through various Z' models. It is shown that the results benefit from the flavor tagging.Comment: 20 pages, 17 figures, 6 table
    corecore