10,921 research outputs found
Atmospheric teleconnection mechanisms of extratropical North Atlantic SST influence on Sahel rainfall
Extratropical North Atlantic cooling has been tied to droughts over the Sahel in both paleoclimate observations and modeling studies. This study, which uses an atmospheric general circulation model (GCM) coupled to a slab ocean model that simulates this connection, explores the hypothesis that the extratropical North Atlantic cooling causes the Sahel droughts via an atmospheric teleconnection mediated by tropospheric cooling. The drying is also produced in a regional climate model simulation of the Sahel when reductions in air temperature (and associated geopotential height and humidity changes) from the GCM simulation are imposed as the lateral boundary conditions. This latter simulation explicitly demonstrates the central role of tropospheric cooling in mediating the atmospheric teleconnection from extratropical North Atlantic cooling. Diagnostic analyses are applied to the GCM simulation to infer teleconnection mechanisms. An analysis of top of atmosphere radiative flux changes diagnosed with a radiative kernel technique shows that extratropical North Atlantic cooling is augmented by a positive low cloud feedback and advected downstream, cooling Europe and North Africa. The cooling over North Africa is further amplified by a reduced greenhouse effect from decreased atmospheric specific humidity. A moisture budget analysis shows that the direct moisture effect and monsoon weakening, both tied to the ambient cooling and resulting circulation changes, and feedbacks by vertical circulation and evaporation augment the rainfall reduction. Cooling over the Tropical North Atlantic in response to the prescribed extratropical cooling also augments the Sahel drying. Taken together, they suggest a thermodynamic pathway for the teleconnection. The teleconnection may also be applicable to understanding the North Atlantic influence on Sahel rainfall over the twentieth century
Flavor SU(3) analysis of charmless B->PP decays
We perform a global fits to charmless decays which independently
constrain the vertex of the unitarity triangle. The
fitted amplitudes and phase are used to predict the branching ratios and CP
asymmetries of all decay modes, including those of the system. Different
schemes of SU(3) breaking in decay amplitude sizes are analyzed. The
possibility of having a new physics contribution to decays is also
discussed.Comment: 3 pages, 2 figs. Talk given at EPS-HEP07 To appear in the
proceedings, Reference adde
Fluctuations of Entropy Production in Partially Masked Electric Circuits: Theoretical Analysis
In this work we perform theoretical analysis about a coupled RC circuit with
constant driven currents. Starting from stochastic differential equations,
where voltages are subject to thermal noises, we derive time-correlation
functions, steady-state distributions and transition probabilities of the
system. The validity of the fluctuation theorem (FT) is examined for scenarios
with complete and incomplete descriptions.Comment: 4 pages, 1 figur
Evolutionary L∞ identification and model reduction for robust control
An evolutionary approach for modern robust control oriented system identification and model reduction in the frequency domain is proposed. The technique provides both an optimized nominal model and a 'worst-case' additive or multiplicative uncertainty bounding function which is compatible with robust control design methodologies. In addition, the evolutionary approach is applicable to both continuous- and discrete-time systems without the need for linear parametrization or a confined problem domain for deterministic convex optimization. The proposed method is validated against a laboratory multiple-input multiple-output (MIMO) test rig and benchmark problems, which show a higher fitting accuracy and provides a tighter L�¢���� error bound than existing methods in the literature do
An Overview of China's Environmental Governance Problems
The Wind Turbine industry continues to drive towards high market penetrationand profitability. In order to keep Wind Turbines in field for as long as possiblecomputational analysis tools are required. The open source tool QBlade[38] softwarewas extended to now contain routines to analyse the structural properties of WindTurbine blades. This was achieved using 2D integration methods and a Tapered Euler-Bernoulli beam element in order to find the mode shapes and 2D sectional properties.This was a key step towards integrating the National Renewable Energy LaboratoriesFAST package[32] which has the ability to analyse Aeroelastic Responses. The QFEMmodule performed well for the test cases including: hollow isotropic blade, rotatingbeam and tapered beam. Some improvements can be made to the torsion estimationof the 2D sections but this has no effect on the mode shapes required for the FASTsimulations
Determination of Dynamic Shear Modulus of Soils from Static Strength
A correlation study between the dynamic shear modulus obtained from the resonant column technique and the static strength obtained from the undrained triaxial compression test is described. The materials studied were a uniform sand, a non-active fine silty clay and a highly-active bentonite clay treated with additives to increase the range for static and dynamic shear strength of the soils. It is noted that a linear relationship exists between the dynamic shear modulus, except for those soil specimens having very low strength, independent of test parameters. Using linear regression analysis, empirical equations for predicting the maximum dynamic shear modulus from the static strength have been obtained for the three different soils
- …