629 research outputs found

    The Dark Side of the Littlest Seesaw: freeze-in, the two right-handed neutrino portal and leptogenesis-friendly fimpzillas

    Full text link
    We propose a minimal model to simultaneously account for a realistic neutrino spectrum through a type-I seesaw mechanism and a viable dark matter relic density. The model is an extension of the Littlest Seesaw model in which the two right-handed neutrinos of the model are coupled to a Z2Z_2-odd dark sector via right-handed neutrino portal couplings. In this model, a highly constrained and direct link between dark matter and neutrino physics is achieved by considering the freeze-in production mechanism of dark matter. We show that the neutrino Yukawa couplings which describe neutrino mass and mixing may also play a dominant role in the dark matter production. We investigate the allowed regions in the parameter space of the model that provide the correct neutrino masses and mixing and simultaneously give the correct dark matter relic abundance. In certain cases the right-handed neutrino mass may be arbitrarily large, for example in the range 1010101110^{10}-10^{11} GeV required for vanilla leptogenesis, with a successful relic density arising from frozen-in dark matter particles with masses around this scale, which we refer to as "fimpzillas".Comment: 24 pages, 5 figures. v2: version to appear in JCA

    CleAir monitoring system for particulate matter. A case in the Napoleonic Museum in Rome

    Get PDF
    Monitoring the air particulate concentration both outdoors and indoors is becoming a more relevant issue in the past few decades. An innovative, fully automatic, monitoring system called CleAir is presented. Such a system wants to go beyond the traditional technique (gravimetric analysis), allowing for a double monitoring approach: the traditional gravimetric analysis as well as the optical spectroscopic analysis of the scattering on the same filters in steady-state conditions. The experimental data are interpreted in terms of light percolation through highly scattering matter by means of the stretched exponential evolution. CleAir has been applied to investigate the daily distribution of particulate matter within the Napoleonic Museum in Rome as a test case

    Tradition and innovation in the water buffalo dairy products

    Get PDF
    AbstractThe first part of a two-part synthesis paper focuses on current research on optimization of Mozzarella cheese manufacture. Starting from technology of traditional cheese points susceptible of modification are identified for achieving greater yield and improving quality. In addition ingredients are identified which can enhance quality and performance characteristic of cheese also in term of economy. The second part considers the development of new cheese varieties whose technology has been developed in bovine milk. Water buffalo cheese reproducing bovine counterpart varieties like Gorgonzola, Grana, Asiago, Taleggio has been developed and are commercially available. Yogurt, and kefir, have also developed to enrich the panel of water buffalo dairy products

    Linear conduction in N-type organic field effect transistors with nanometric channel lengths and graphene as electrodes

    Get PDF
    In this work, we test graphene electrodes in nanometric channel n-type Organic Field Effect Transistors (OFETs) based on thermally evaporated thin films of the perylene-3,4,9,10-tetracarboxylic acid diimide derivative. By a thorough comparison with short channel transistors made with reference gold electrodes, we found that the output characteristics of the graphene-based devices respond linearly to the applied bias, in contrast with the supralinear trend of gold-based transistors. Moreover, short channel effects are considerably suppressed in graphene electrode devices. More specifically, current on/off ratios independent of the channel length (L) and enhanced response for high longitudinal biases are demonstrated for L down to 3c140 nm. These results are rationalized taking into account the morphological and electronic characteristics of graphene, showing that the use of graphene electrodes may help to overcome the problem of Space Charge Limited Current in short channel OFETs

    Could nearby star-forming galaxies light up the point-like neutrino sky?

    Full text link
    Star-forming and starburst galaxies, which are well-known cosmic-rays reservoirs, are expected to emit gamma-rays and neutrinos predominantly via hadronic collisions. In this Letter, we analyze the 10-year Fermi-LAT spectral energy distributions of 13 nearby galaxies by means of a physical model which accounts for high-energy proton transport in starburst nuclei and includes the contribution of primary and secondary electrons. In particular, we test the hypothesis that the observed gamma-ray fluxes are mostly due to star-forming activity, in agreement with the available star formation rates coming from IR and UV observations. Through this observation-based approach, we determine the most-likely neutrino counterpart from star-forming and starburst galaxies and quantitatively assess the ability of current and upcoming neutrino telescopes to detect them as point-like sources. Remarkably, we find that the cores of the Small Magellanic Cloud and the Circinus galaxy are potentially observable by KM3NeT/ARCA with 6 years of observation. Moreover, most of the nearby galaxies are likely to be just a factor of a few below the KM3NeT and IceCube-Gen2 point-like sensitivities. After investigating the prospects for detection of gamma-rays above TeV energies from these sources, we conclude that the joint observations of high-energy neutrinos and gamma-rays with upcoming telescopes will be an objective test for our emission model and may provide compelling evidence of star-forming activity as a tracer of neutrino production.Comment: 7 pages, 2 figure
    corecore