53 research outputs found

    Discontinuous permeable adsorptive barrier design and cost analysis: a methodological approach to optimisation

    Get PDF
    The following paper presents a method to optimise a discontinuous permeable adsorptive barrier (PAB-D). This method is based on the comparison of different PAB-D configurations obtained by changing some of the main PAB-D design parameters. In particular, the well diameters, the distance between two consecutive passive wells and the distance between two consecutive well lines were varied, and a cost analysis for each configuration was carried out in order to define the best performing and most cost-effective PAB-D configuration. As a case study, a benzene-contaminated aquifer located in an urban area in the north of Naples (Italy) was considered. The PAB-D configuration with a well diameter of 0.8 m resulted the best optimised layout in terms of performance and cost-effectiveness. Moreover, in order to identify the best configuration for the remediation of the aquifer studied, a comparison with a continuous permeable adsorptive barrier (PAB-C) was added. In particular, this showed a 40% reduction of the total remediation costs by using the optimised PAB-D

    Influence of Autogenerative Final Pressure on the Specific Methanogenic Yield in a High-pressure Anaerobic Digestion Process

    Get PDF
    In recent years, the development of renewable energy and the improvement of technologies for its production has aroused particular interest. In this perspective, pressurised anaerobic digestion (PAD), i.e. the anaerobic digestion process occurring at a pressure higher than the atmospheric one, has attracted significant attention. PAD enables the production of pressurised biogas, reducing energy costs required for biogas upgrading and injection into the distribution grid. In addition, PAD presents the advantage that by increasing pressure, the solubilisation of CO2, as compared to CH4, increases, resulting in the production of biogas with a high content of CH4 (v/v% CH4 = 90%). Furthermore, results in the literature reported the potential of the autogenerative PAD, in which biogas accumulates in the headspace of the reactor and leads to a gradual increase in autogenerated pressure. In this research, the effect of autogenerated final pressure on the specific methanogenic yield (SMY) was investigated by simulating an autogenerative PAD process of sodium acetate and using a modified ADM1 (Anaerobic Digestion Model No 1) model in batch mode; moreover, the kinetic parameters of the process were assessed. Simulation results showed a good agreement with experimental results and highlighted that SMY increases by increasing the autogenerated final pressure

    Extraction of astaxanthin from microalga Haematococcus pluvialis in red phase by using generally recognized as safe solvents and accelerated extraction

    Get PDF
    Abstract Solvent Extraction was tested to extract astaxanthin from Haematococcus pluvialis in red phase (HPR), by investigating effects of solvents, extraction pressure and temperature. Astaxanthin isomers were identified and quantified in the extract. The performances of acetone and ethanol, Generally Recognized As Safe (GRAS) solvents, were explored. Negligible effect of pressure was found, while with increasing extraction temperature astaxanthin recovery increased till a maximum value, beyond which thermal degradation seemed to be greater than the positive effect of temperature on extraction. Furthermore, to maximize the extraction yield of astaxanthin, mechanical pre-treatment of HPR biomass was carried out and several extraction runs were consecutively performed. Experimental results showed that after the mechanical pre-treatment the astaxanthin recovery strongly increased while a single extraction run of 20 min was sufficient to extract more than 99% of total astaxanthin extracted. After pre-treatment, maximum recovery of about 87% was found for acetone (pressure = 100 bar; temperature = 40 °C; total time = 60 min)

    Pump-and-treat configurations with vertical and horizontal wells to remediate an aquifer contaminated by hexavalent chromium

    Get PDF
    Pump-and-treat technology is among the most used technologies for groundwater remediation. While conventional, vertical wells (VRWs) are well-known and used from long time, horizontal wells (HRWs) have been explored for remediation technologies only in last few decades. HRWs have shown to outperform vertical wells in terms of versatility, productivity and clean-up times under certain conditions. In this paper, the efficacy of an innovative pump-and-treat (P&T) configuration for groundwater remediation obtained by adopting either VRWs or HRWs technology is comparatively tested. A 3D transient finite element model of an unconfined aquifer containing a hexavalent chromium (Cr(VI)) contamination plume is considered to compare a single horizontal well configuration vs a range of spatially-optimised arrays containing vertical wells. A sensitivity analysis aimed at finding the best configuration to minimise the remediation time and the related cost is carried out by comparing different well diameters, D, pumping rates, Q, and position of wells. A comparative cost analysis demonstrates that, for the examined case-study, a single HRW achieves the clean-up goals in the same time span as for a greater number of vertical wells, but at higher price due to the excavation costs

    An optimized configuration of adsorptive wells for the remediation of an aquifer contaminated by multiple aromatic hydrocarbon pollutants

    Get PDF
    Adsorptive wells arrays are an innovative outline of Permeable Reactive Barrier (PRBs) made of a definite number of passive deep wells opportunely distributed in the aquifer, known as PAB-D (Discontinuous Permeable Adsorptive Barrier). They are generally located downstream the contaminated groundwater flow and perpendicularly to the groundwater flow direction. Being PAB-D wells filled with adsorbing media, whose hydraulic permeability is higher than the surrounding media, the array will create a targeted capture zone, which will force the contaminated water to pass through the whole PAB-D, allowing for both the interception of the contaminant plume and its treatment. In this work, an optimized configuration of PAB-D is presented, for the in situ-remediation of an aquifer simultaneously contaminated by benzene and toluene. The design optimization of the PAB-D was performed by using COMSOL Multiphysics®, in which numerical simulations reproduced the transport and the adsorptive phenomena occurring inside the aquifer and the barrier itself. The proposed technique was applied to the remediation of an aquifer located in an urban area in the north of Naples (Italy), in proximity of numerous landfills, where the contamination was spread over an area of 0.10 km2. Simulation results confirm the effectiveness of the PAB-D, being both pollutant plumes intercepted and their concentrations reduced below their correspondent Italian regulatory threshold values. The best array configuration of PAB-D resulted made of 741 wells, each having a diameter of 0.6 m, which was also compared with a continuous barrier (PAB-C) showing a reduction of about 49% of the volume and 35% of the overall remediation cost

    Biomass gasification technology: The state of the art overview

    No full text
    In the last decades the interest in the biomass gasification process has increased due to the growing attention to the use of sustainable energy. Biomass is a renewable energy source and represents a valid alternative to fossil fuels. Gasification is the thermochemical conversion of an organic material into a valuable gaseous product, called syngas, and a solid product, called char. The biomass gasification represents an efficient process for the production of power and heat and the production of hydrogen and second-generation biofuels. This paper deals with the state of the art biomass gasification technologies, evaluating advantages and disadvantages, the potential use of the syngas and the application of the biomass gasification. Syngas cleaning though fundamental to evaluate any gasification technology is not included in this paper since; in the authors' opinion, a dedicated review is necessary

    Assessing the performance of synthetic co-cultures during the conversion of methane into Poly(3-hydroxybutyrate)

    Get PDF
    Producción CientíficaSynthetic co-cultures can enhance pollutant bioconversion performance through synergistic effects among co-existing species. In this study, the potential of Methylocystis hirsuta and Methylocystis parvus to support poly(3-hydroxybutyrate) (PHB) production in co-cultivation with Rhodococcus opacus and Pseudomonas putida under a CH4:O2 atmosphere was assessed batchwise. The metabolic activation of almost all co-cultures studied was faster than that of single strain cultures, bringing higher methane and oxygen consumption rates. Higher PHB yields were achieved when coupling M. hirsuta with R. opacus (63 % w w−1) or with R. opacus and P. putida (64.4 % w w−1) compared to M. hirsuta alone (38.5 % w w−1). Interestingly, the combination of both R. opacus and P. putida with M. parvus reduced PHB accumulation to 42.2 % w w−1 compared to the content observed in M. parvus monocultures (62.2 % w w−1) and M parvus + R. opacus co-cultures (66.6 % w w−1).Junta de Castilla y León - EU-FEDER [CL-EI-2021-07 y UIC 315]Ministry of Economic Development through the “Fondo per la Crescita Sostenibile – Sportello “Agrifood” PON I&C 2014-2020” (Prog. n. F/200125/01-03/X45

    Ibuprofen photodegradation in aqueous solutions

    No full text
    The advanced treatment of polluted liquid streams containing traces of pharmaceutical compounds is a major issue, since more and more effluents from pharma labs and wastewaters containing the excretions of medically treated humans and animals are discharged in the conventional wastewater treatment plants without previous effective treatments. Ibuprofen is a widely used non-steroidal anti-inflammatory drug (NSAID), which explains why it is found in wastewaters so often. In this paper, the removal of IBP from simulated water streams was investigated by using a lab-scale experimental device, consisting of a batch reactor equipped with a lamp emitting monochromatic UV light at a fixed wavelength (254 nm) and various intensities. Three sets of experiments were carried out: the first to study IBP concentration as a function of time, at different volumes of treated solutions (V = 10-30 mL); the second to explore the effect of pH on IBP degradation as a function of time (pH = 2.25-8.25) and the third to evaluate the effect of different UV light intensities on IBP degradation (E = 100-400 mJ m(-2)). The IBP initial concentration (IBP (0)) was varied in the range 30-60 mg L-1. The results obtained show that the concentration of IBP decreases along with treatment time, with a negative effect of the treated volume, i.e. smaller volumes, such as lower liquid heights, are more easily degraded. Moreover, the higher the pH, the better the IBP degradation; actually, when pH increases from 2.25 to 6.6 and 8.25, the IBP concentration, after an hour of treatment, decreases respectively to 45, 34 and 27 % of its initial value. In addition, as the intensity of light increases from 100 to 400 mJ m(-2), the IBP concentration decreases to 34 % of its initial value. A reaction scheme is put forward in the paper, which well describes the effects of volume, pH and light intensity on the IBP degradation measured experimentally. Moreover, the IBP degradation by-products have been identified
    corecore