392 research outputs found

    Buckling analysis of the quadripod structure for the NASA 70-meter antenna

    Get PDF
    As part of the effort to extend the diameter of three Deep Space Network large earth antennas from 64 meters to 70 meters, a slim profiled quadripod structure was designed to support a 7.7 meter diameter subreflector for the 70 meter antenna. The new quadripod design, which particularly emphasizes reduced radio frequency blockage, is achieved by means of a narrow cross sectional profile of the legs. Buckling analysis, using NASTRAN, was conducted in this study to verify the safety margin for the quadripod structural stability

    NASTRAN structural model for the large 64-meter antenna pedestal. Part 2: Improved model

    Get PDF
    Static analysis and a computer structural model for the large 64-m antenna pedestal are developed using the MSC version of the NASTRAN program. This improved pedestal model includes the launch areas and the actual pressure pattern of the oil under the hydrostatic bearing pad. The results obtained from the new improved model have indicated that the deflections due to pad loads are in good agreement with field measurements. The top surface deflection of the pedestal obtained from the NASTRAN model is used as an input to the oil film computer program to determine the minimum oil film thickness under the pad

    NASTRAN structural model for the large ground antenna pedestal with applications to hydrostatic bearing of film

    Get PDF
    Investigations were conducted on the 64-meter antenna hydrostatic bearing oil film thickness under a variety of loads and elastic moduli. These parametric studies used a NASTRAN pedestal structural model to determine the deflections under the hydrostatic bearing pad. The deflections formed the input for a computer program to determine the hydrostratic bearing oil film thickness. For the future 64-meter to 70-meter antenna extension and for the 2.2-meter (86-in.) haunch concrete replacement cases, the program predicted safe oil film thickness (greater than 0.13 mm (0.005 in.) at the corners of the pad). The effects of varying moduli of elasticity for different sections of the pedestal and the film height under stressed runner conditions were also studied

    The fabrication and surface tolerance measurements of the JPL clear aperture microwave antenna

    Get PDF
    Present ground station microwave antennas of the Deep Space Network are of the symmetric dual reflector (cassegrainian) type. An investigation is being made of alternative high-performance offset antenna designs which have a clear aperture (no reflector or structural blockage) with shaped reflector surfaces. A 1.5-m, 32-GHz clear aperture model was built for experimental studies. The unique processes of fabrication, surface measurement, and alignment are described

    Statistical analysis of the 70 meter antenna surface distortions

    Get PDF
    Statistical analysis of surface distortions of the 70 meter NASA/JPL antenna, located at Goldstone, was performed. The purpose of this analysis is to verify whether deviations due to gravity loading can be treated as quasi-random variables with normal distribution. Histograms of the RF pathlength error distribution for several antenna elevation positions were generated. The results indicate that the deviations from the ideal antenna surface are not normally distributed. The observed density distribution for all antenna elevation angles is taller and narrower than the normal density, which results in large positive values of kurtosis and a significant amount of skewness. The skewness of the distribution changes from positive to negative as the antenna elevation changes from zenith to horizon

    Relating Neutrino Masses by dilepton modes of Doubly Charged Scalars

    Full text link
    We study a model with Majorana neutrino masses generated through doubly charged scalars at two-loop level. We give explicit relationships between the neutrino masses and the same sign dilepton decays of the doubly charged scalars. In particular, we demonstrate that at the tribimaximal limit of the neutrino mixings, the absolute neutrino masses and Majorana phases can be extracted through the measurements of the dilepton modes at colliders.Comment: 14 pages, 8 figures, references added, version to be published in PR

    Structural insights into phenylethanolamines high-affinity binding site in NR2B from binding and molecular modeling studies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Phenylethanolamines selectively bind to NR2B subunit-containing <it>N</it>-methyl-<it>D</it>-aspartate-subtype of ionotropic glutamate receptors and negatively modulate receptor activity. To investigate the structural and functional properties of the ifenprodil binding domain on the NR2B protein, we have purified a soluble recombinant rat NR2B protein fragment comprising the first ~400 amino acid amino-terminal domain (ATD2B) expressed in <it>E. coli</it>. Spectral measurements on refolded ATD2B protein demonstrated specific binding to ifenprodil. We have used site-directed mutagenesis, circular dichroism spectroscopy and molecular modeling to obtain structural information on the interactions between critical amino acid residues and ifenprodil of our soluble refolded ATD2B proteins. Ligand-induced changes in protein structure were inferred from changes in the circular dichroism spectrum, and the concentration dependence of these changes was used to determine binding constants for ifenprodil and its analogues.</p> <p>Results</p> <p>Ligand binding of ifenprodil, RO25,6981 and haloperidol on soluble recombinant ATD2B determined from circular dichroism spectroscopy yielded low-to-high micromolar equilibrium constants which concurred with functional IC<sub>50 </sub>measurement determined in heterologously expressed NR1/NR2B receptors in <it>Xenopus </it>oocytes. Amino acid residue substitutions of Asp101, Ile150 and Phe176 with alanine residue within the ATD2B protein altered the recombinant protein dissociation constants for ifenprodil, mirroring the pattern of their functional phenotypes. Molecular modeling of ATD2B as a clam-shell-like structure places these critical residues near a putative ligand binding site.</p> <p>Conclusion</p> <p>We report for the first time biochemical measurements show that the functional measurements actually reflect binding to the ATD of NR2B subunit. Insights gained from this study help advance the theory that ifenprodil is a ligand for the ATD of NR2B subunit.</p

    Reversible changes in protein phosphorylation during germinal vesicle breakdown and pronuclear formation in bovine oocytes in vitro

    Get PDF
    This study examined the event of protein phosphorylation in bovine oocytes during germinal vesicle breakdown (GVBD) and formation of pronuclei following fertilisation in vitro. Immature oocytes were obtained from abattoir materials and cultured in vitro. The oocytes were labelled with [32P]orthophosphate at 3 h intervals from 0 to 12 h following maturation in culture or from 3 to 18 h following insemination. One-dimensional gel electrophoresis indicated that levels of protein phosphorylation are low prior to GVBD. However, the levels of protein phosphorylation at approximately 40 kDa, 27 kDa, 23 kDa and 18 kDa increased substantially following GVBD and then decreased gradually as maturation in culture progressed. In contrast, the levels of protein phosphorylation increased gradually in the oocytes following pronucleus formation. Further, two-dimensional gel electrophoresis indicated that the protein at approximately 18 kDa reversibly changed in the oocytes during maturation and fertilisation. These results indicate that the reversible changes of this phosphoprotein may be related to either cell cycle transition or pronucleus formation during maturation and fertilisation in bovine oocytes.</p

    Chaos in driven Alfvén systems: unstable periodic orbits and chaotic saddles

    No full text
    International audienceThe chaotic dynamics of Alfvén waves in space plasmas governed by the derivative nonlinear Schrödinger equation, in the low-dimensional limit described by stationary spatial solutions, is studied. A bifurcation diagram is constructed, by varying the driver amplitude, to identify a number of nonlinear dynamical processes including saddle-node bifurcation, boundary crisis, and interior crisis. The roles played by unstable periodic orbits and chaotic saddles in these transitions are analyzed, and the conversion from a chaotic saddle to a chaotic attractor in these dynamical processes is demonstrated. In particular, the phenomenon of gap-filling in the chaotic transition from weak chaos to strong chaos via an interior crisis is investigated. A coupling unstable periodic orbit created by an explosion, within the gaps of the chaotic saddles embedded in a chaotic attractor following an interior crisis, is found numerically. The gap-filling unstable periodic orbits are responsible for coupling the banded chaotic saddle (BCS) to the surrounding chaotic saddle (SCS), leading to crisis-induced intermittency. The physical relevance of chaos for Alfvén intermittent turbulence observed in the solar wind is discussed
    corecore