10 research outputs found

    APPL Proteins FRET at the BAR: Direct Observation of APPL1 and APPL2 BAR Domain-Mediated Interactions on Cell Membranes Using FRET Microscopy

    Get PDF
    Human APPL1 and APPL2 are homologous RAB5 effectors whose binding partners include a diverse set of transmembrane receptors, signaling proteins, and phosphoinositides. APPL proteins associate dynamically with endosomal membranes and are proposed to function in endosome-mediated signaling pathways linking the cell surface to the cell nucleus. APPL proteins contain an N-terminal Bin/Amphiphysin/Rvs (BAR) domain, a central pleckstrin homology (PH) domain, and a C-terminal phosphotyrosine binding (PTB) domain. Previous structural and biochemical studies have shown that the APPL BAR domains mediate homotypic and heterotypic APPL-APPL interactions and that the APPL1 BAR domain forms crescent-shaped dimers. Although previous studies have shown that APPL minimal BAR domains associate with curved cell membranes, direct interaction between APPL BAR domains on cell membranes in vivo has not been reported.Herein, we used a laser-scanning confocal microscope equipped with a spectral detector to carry out fluorescence resonance energy transfer (FRET) experiments with cyan fluorescent protein/yellow fluorescent protein (CFP/YFP) FRET donor/acceptor pairs to examine interactions between APPL minimal BAR domains at the subcellular level. This comprehensive approach enabled us to evaluate FRET levels in a single cell using three methods: sensitized emission, standard acceptor photobleaching, and sequential acceptor photobleaching. We also analyzed emission spectra to address an outstanding controversy regarding the use of CFP donor/YFP acceptor pairs in FRET acceptor photobleaching experiments, based on reports that photobleaching of YFP converts it into a CFP-like species.All three methods consistently showed significant FRET between APPL minimal BAR domain FRET pairs, indicating that they interact directly in a homotypic (i.e., APPL1-APPL1 and APPL2-APPL2) and heterotypic (i.e., APPL1-APPL2) manner on curved cell membranes. Furthermore, the results of our experiments did not show photoconversion of YFP into a CFP-like species following photobleaching, supporting the use of CFP donor/YFP acceptor FRET pairs in acceptor photobleaching studies

    Yeast Eap1p, an eIF4E-associated protein, has a separate function involving genetic stability

    Get PDF
    AbstractA rate-limiting step during translation initiation in eukaryotic cells involves binding of the initiation factor eIF4E to the 7-methylguanosine-containing cap of mRNAs. Overexpression of eIF4E leads to malignant transformation [1–3], and eIF4E is elevated in many human cancers [4–7]. In mammalian cells, three eIF4E-binding proteins each interact with eIF4E and inhibit its function [8–10]. In yeast, EAP1 encodes a protein that binds eIF4E and inhibits cap-dependent translation in vitro[11]. A point mutation in the canonical eIF4E-binding motif of Eap1p blocks its interaction with eIF4E [11]. Here, we characterized the genetic interactions between EAP1 and NDC1, a gene whose function is required for duplication of the spindle pole body (SPB) [12], the centrosome-equivalent organelle in yeast that functions as the centrosome. We found that the deletion of EAP1 is lethal when combined with the ndc1-1 mutation. Mutations in NDC1 or altered NDC1 gene dosage lead to genetic instability [13,14]. Yeast strains lacking EAP1 also exhibit genetic instability. We tested whether these phenotypes are due to loss of EAP1 function in regulating translation. We found that both the synthetic lethal phenotype and the genetic instability phenotypes are rescued by a mutant allele of EAP1 that is unable to bind eIF4E. Our findings suggest that Eap1p carries out an eIF4E-independent function to maintain genetic stability, most likely involving SPBs

    Exosomal Biomarkers in Down Syndrome and Alzheimer\u27s Disease

    No full text
    Every person with Down syndrome (DS) has the characteristic features of Alzheimer\u27s disease (AD) neuropathology in their brain by the age of forty, and most go on to develop AD dementia. Since people with DS show highly variable levels of baseline function, it is often difficult to identify early signs of dementia in this population. The discovery of blood biomarkers predictive of dementia onset and/or progression in DS is critical for developing effective clinical diagnostics. Our recent studies show that neuron-derived exosomes, which are small extracellular vesicles secreted by most cells in the body, contain elevated levels of amyloid-beta peptides and phosphorylated-Tau that could indicate a preclinical AD phase in people with DS starting in childhood. We also found that the relative levels of these biomarkers were altered following dementia onset. Exosome release and signaling are dependent on cellular redox homeostasis as well as on inflammatory processes, and exosomes may be involved in the immune response, suggesting a dual role as both triggers of inflammation in the brain and propagators of inflammatory signals between brain regions. Based on recently reported connections between inflammatory processes and exosome release, the elevated neuroinflammatory state observed in people with DS may affect exosomal AD biomarkers. Herein, we discuss findings from studies of people with DS, people with DS and AD (DS-AD), and mouse models of DS showing new connections between neuroinflammatory pathways, oxidative stress, exosomes, and exosome-mediated signaling, which may inform future AD diagnostics, preventions, and treatments in the DS population as well as in the general population

    Characterization of Anti-Ana o 3 Monoclonal Antibodies and Their Application in Comparing Brazilian Cashew Cultivars

    No full text
    Ana o 3 is an immuno-dominant cashew nut allergen. Four monoclonal antibodies to Ana o 3 (2H5, 6B9C1, 19C9A2, and 5B7F8) were characterized by ELISA and in silico modeling. The 2H5 antibody was the only antibody specific for cashew nut extract. In addition to cashew nut extract, the 6B9C1 and 19C9A2 antibodies recognized pistachio extract, and the 5B7F8 recognized pecan extract. All four antibodies recognized both recombinant Ana o 3.0101 and native Ana o 3. ELISA assays following treatment of purified Ana o 3 with a reducing agent indicated that the 6B9C1 and 19C9A2 antibodies likely recognize conformational epitopes, while the 2H5 and 5B7F8 antibodies likely recognize linear epitopes. In silico modeling predicted distinct epitopes for each of the anti-Ana o 3 antibodies. Screening extracts from 11 Brazilian cashew nut cultivars using all four antibodies showed slight differences in Ana o 3 bindings, demonstrating that these antibodies could identify cultivars with varying allergen content

    Image_1_Human iPSC-derived retinal organoids develop robust Alzheimer’s disease neuropathology.tif

    No full text
    Alzheimer’s disease (AD), characterized by memory loss and cognitive decline, affects nearly 50 million people worldwide. Amyloid beta (Aβ) plaques and intracellular neurofibrillary tangles (NFTs) of phosphorylated Tau protein (pTau) are key histopathological features of the disease in the brain, and recent advances have also identified AD histopathology in the retina. Thus, the retina represents a central nervous system (CNS) tissue highly amenable to non-invasive diagnostic imaging that shows promise as a biomarker for early AD. Given the devastating effects of AD on patients, their families, and society, new treatment modalities that can significantly alter the disease course are urgently needed. In this study, we have developed and characterized a novel human retinal organoid (RO) model derived from induced pluripotent stem cells (iPSCs) from patients with familial AD due to mutations in the amyloid precursor protein gene (APP). Using immunofluorescence and histological staining, we evaluated the cellular composition and AD histopathological features of AD-ROs compared to control ROs from healthy individuals. We found that AD-ROs largely resemble their healthy control counterparts in cellular composition but display increased levels of Aβ and pTau. We also present proof of principle of an assay to quantify amyloid levels in whole ROs. This in vitro model of the human AD retina constitutes a new tool for drug screening, biomarker discovery, and pathophysiological studies.</p
    corecore