6,705 research outputs found

    Loss of vesicular dopamine release precedes tauopathy in degenerative dopaminergic neurons in a Drosophila model expressing human tau.

    Get PDF
    While a number of genome-wide association studies have identified microtubule-associated protein tau as a strong risk factor for Parkinson's disease (PD), little is known about the mechanism through which human tau can predispose an individual to this disease. Here, we demonstrate that expression of human wild-type tau is sufficient to disrupt the survival of dopaminergic neurons in a Drosophila model. Tau triggers a synaptic pathology visualized by vesicular monoamine transporter-pHGFP that precedes both the age-dependent formation of tau-containing neurofibrillary tangle-like pathology and the progressive loss of DA neurons, thereby recapitulating the pathological hallmarks of PD. Flies overexpressing tau also exhibit progressive impairments of both motor and learning behaviors. Surprisingly, contrary to common belief that hyperphosphorylated tau could aggravate toxicity, DA neuron degeneration is alleviated by expressing the modified, hyperphosphorylated tau(E14). Together, these results show that impairment of VMAT-containing synaptic vesicle, released to synapses before overt tauopathy may be the underlying mechanism of tau-associated PD and suggest that correction or prevention of this deficit may be appropriate targets for early therapeutic intervention

    catena-Poly[[diaqua­magnesium(II)]-bis­(μ-5-ammonio­isophthalato-κ2 O 1:O 3)]

    Get PDF
    In the title compound, [Mg(C8H6NO4)2(H2O)2]n, the MgII ion lies on a twofold roatation axis and is coordinated in a slightly distorted octa­hedral environment. Pairs of bridging ammonium­isophthalate ligands connect symmetry-related MgII ions, forming chains along [010]. In the crystal, inter­molecular O—H⋯O and N—H⋯O hydrogen bonds link these chains into a three-dimensional network. The centroids of pairs of symmetry-related benzene rings within a chain are separated by 3.5707 (12) Å

    A Two-Phase Maximum-Likelihood Sequence Estimation for Receivers with Partial CSI

    Full text link
    The optimality of the conventional maximum likelihood sequence estimation (MLSE), also known as the Viterbi Algorithm (VA), relies on the assumption that the receiver has perfect knowledge of the channel coefficients or channel state information (CSI). However, in practical situations that fail the assumption, the MLSE method becomes suboptimal and then exhaustive checking is the only way to obtain the ML sequence. At this background, considering directly the ML criterion for partial CSI, we propose a two-phase low-complexity MLSE algorithm, in which the first phase performs the conventional MLSE algorithm in order to retain necessary information for the backward VA performed in the second phase. Simulations show that when the training sequence is moderately long in comparison with the entire data block such as 1/3 of the block, the proposed two-phase MLSE can approach the performance of the optimal exhaustive checking. In a normal case, where the training sequence consumes only 0.14 of the bandwidth, our proposed method still outperforms evidently the conventional MLSE.Comment: 5 pages and 4 figure

    Comparison of Radical Scavenging Activity, Cytotoxic Effects and Apoptosis Induction in Human Melanoma Cells by Taiwanese Propolis from Different Sources

    Get PDF
    Propolis is a sticky substance that is collected from plants by honeybees. We previously demonstrated that propolins A, B, C, D, E and F, isolated from Taiwanese propolis (TP), could effectively induce human melanoma cell apoptosis and were strong antioxidant agents. In this study, we evaluated TP for free radical scavenging activity by DPPH (1,2-diphenyl-2-picrylhydrazyl). The phenolic concentrations were quantified by the Folin–Ciocalteu method. The apoptosis trigger activity in human melanoma cells was evaluated. TP contained a higher level of phenolic compounds and showed strong capability to scavenge free radicals. Additionally, TP1g, TP3, TP4 and TP7 exhibited a cytotoxic effect on human melanoma cells, with an IC(50) of ∼2.3, 2.0, 3.3 and 3.3 μg/ml, respectively. Flow cytometric analysis for DNA fragmentation indicated that TP1g, TP2, TP3 and TP7 could induce apoptosis in human melanoma cells and there is a marked loss of cells from the G2/M phase of the cell cycle. To address the mechanism of the apoptosis effect of TP, we evaluated its effects on induction of apoptosis-related proteins in human melanoma cells. The levels of procaspase-3 and PARP [poly(ADP-ribose) polymerase] were markedly decreased. Furthermore, propolins A, B, C, D, E and F in TP were determined using HPLC. The results indicate that TP is a rich source of these compounds. The findings suggest that TP induces apoptosis in human melanoma cells due to its high level of propolins

    Poly[(μ5-5-amino­isophthalato)aqua­barium]

    Get PDF
    In the title compound, [Ba(C8H5NO4)(H2O)]n, the BaII ion is eight-coordinated by six O atoms and one N atom from five 5-amino­isophthalate ligands and one water mol­ecule in a distorted dodeca­hedral geometry. The BaII ions are connected via the ligands into a layer parallel to (011). The layers are linked by N—H⋯O hydrogen bonds. The coordinated water mol­ecule is involved in intra­layer O—H⋯O hydrogen bonds
    corecore