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Repulsive Guidance Molecule (RGM) Family Proteins
Exhibit Differential Binding Kinetics for Bone
Morphogenetic Proteins (BMPs)
Qifang Wu, Chia Chi Sun, Herbert Y. Lin, Jodie L. Babitt*

Program in Anemia Signaling Research, Nephrology Division, Program in Membrane Biology, and Center for Systems Biology, Massachusetts General Hospital, Harvard

Medical School, Boston, Massachusetts, United States of America

Abstract

Bone morphogenetic proteins (BMPs) are members of the transforming growth factor beta superfamily that exert their
effects via type I and type II serine threonine kinase receptors and the SMAD intracellular signaling pathway to regulate
diverse biologic processes. Recently, we discovered that the repulsive guidance molecule (RGM) family, including RGMA,
RGMB, and RGMC/hemojuvelin (HJV), function as co-receptors that enhance cellular responses to BMP ligands. Here, we use
surface plasmon resonance to quantitate the binding kinetics of RGM proteins for BMP ligands. We show that among the
RGMs, HJV exhibits the highest affinity for BMP6, BMP5, and BMP7 with KD 8.1, 17, and 20 nM respectively, versus 28, 33, and
166 nM for RGMB, and 55, 83, and 63 nM for RGMA. Conversely, RGMB exhibits preferential binding to BMP4 and BMP2 with
KD 2.6 and 5.5 nM respectively, versus 4.5 and 9.4 nM for HJV, and 14 and 22 nM for RGMA, while RGMA exhibits the lowest
binding affinity for most BMPs tested. Among the BMP ligands, RGMs exhibit the highest relative affinity for BMP4 and the
lowest relative affinity for BMP7, while none of the RGMs bind to BMP9. Thus, RGMs exhibit preferential binding for distinct
subsets of BMP ligands. The preferential binding of HJV for BMP6 is consistent with the functional role of HJV and BMP6 in
regulating systemic iron homeostasis. Our data may help explain the mechanism by which BMPs exert cell-context specific
effects via a limited number of type I and type II receptors.
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Introduction

Bone morphogenetic proteins (BMPs) are a subfamily of the

transforming growth factor beta (TGF-b) superfamily of signaling

molecules that is comprised of over 40 members [1]. Although best

characterized for their roles during development due to the

frequent embryonic lethality or major organ malformation caused

by functional loss of BMP/TGF-b signaling pathway components,

there is an increasingly recognized role for BMP/TGF-b super-

family signaling during postnatal life [2].

BMP/TGF-b superfamily members exert their effects by

binding to a complex of two type I and two type II serine

threonine kinase receptors to stimulate phosphorylation of in-

tracellular SMAD proteins, which complex with common-

mediator SMAD4 and translocate to the nucleus to regulate gene

transcription [1–2]. Thus far, 7 type I receptors (4 for the BMP

subfamily) and 5 type II receptors (3 for the BMP subfamily) have

been described. In general, BMPs signal via one subset of SMAD

proteins (SMAD1, SMAD5, and SMAD8), while TGF-b ligands

signal via another subset (SMAD2 and SMAD3) [1–2]. Other

noncanonical signaling cascades can also be activated, but the

molecular mechanisms are less well understood [1–2]. One

important question in the field is how the BMP/TGF-b superfam-

ily is able to exert a cell-context specific effect through a limited

number of type I and type II receptors and intracellular SMAD

proteins.

Recently, we discovered a novel family of proteins, the repulsive

guidance molecule (RGM) family, that function as co-receptors for

the BMP signaling pathway [3–5]. This family is comprised of 3

members, RGMA, RGMB, and RGMC (also known as

hemojuvelin, hereafter referred to as HJV), that share 50–60%

amino acid identity and similar structural features, including an N-

terminal signal peptide, proteolytic cleavage site, partial von

Willebrand factor type D domain, and glycophosphatidylinositol

(GPI) anchor [6–11]. We have previously demonstrated that all

RGMs bind to BMP ligands and BMP type I and type II receptors

to enhance intracellular SMAD phosphorylation and BMP-

SMAD target gene transcription in response to BMP ligands [3–
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5]. It has been hypothesized that expression of RGM proteins

enables cells to selectively respond to low levels of BMP ligands [3–

5]. At least some members of the RGM family have also been

shown to be released from the cell in soluble form (lacking the GPI

anchor) [8–9,12–17], and soluble RGM proteins can act as

inhibitors of the BMP signaling pathway by sequestering BMP

ligands [3,18–19].

RGM family members are differentially expressed in a wide

range of tissues, and have been suggested to have diverse biologic

roles ranging from repulsive axonal guidance (giving rise to the

family name), neural tube closure, neuronal differentiation, cell

survival, axonal regeneration after injury, immunity, inflamma-

tion, and iron homeostasis regulation [2–11,20–33]. Some of these

biologic actions depend on the BMP signaling function of RGM

family members [5,7,18–21,32–33], while others appear to be

independent of the BMP signaling function of RGMs [23–24,26–

30].

HJV has the most well characterized biologic role among the

RGM family that depends on its function as a BMP co-receptor.

Mutations in the gene encoding HJV lead to the iron overload

disorder juvenile hemochromatosis in both human patients and

mice as a direct result of impaired BMP-SMAD signaling in the

liver and consequent deficiency of the main iron regulatory

hormone hepcidin [5,7,20–21]. The central role of the BMP-

SMAD pathway in hepcidin regulation and systemic iron balance

is further supported by the fact that mutations in the genes

encoding the ligand BMP6 [18,34], BMP type I receptors ALK2

and ALK3 [35], or common-mediator SMAD4 [36] all lead to

hepcidin deficiency and iron overload similar to HJV mutations.

Furthermore, pharmacologic modulators of the BMP-SMAD

signaling pathway regulate hepcidin expression and systemic iron

balance in normal mice [18–19,37], and ameliorate iron overload

due to hepcidin deficiency and anemia due to hepcidin excess in

animal models [38–39].

Interestingly, indirect evidence from binding competition and

biological inhibition assays using soluble RGM proteins lacking

the GPI anchor fused to the Fc tail of human IgG (RGM.Fc)

suggest that RGM proteins do not bind to all BMP ligands with

equal affinity [3–5,18–19,40]. Biologic assays in cell culture

systems also suggest that RGMs utilize some BMP ligands

preferentially [4–5,40–42]. The differential binding of RGMs to

BMP ligands may provide insight into their biologic functions, and

into the mechanisms by which BMPs generate a cell-context

specific effect. Here, we used surface plasmon resonance (SPR) to

quantitate the binding kinetics of RGM proteins to a wide array of

BMP ligands including BMP2, BMP4, BMP5, BMP6, BMP7 and

BMP9.

Materials and Methods

Surface Plasmon Resonance (SPR)
All SPR kinetics experiments were carried out on a Biacore

T200 (GE Healthcare) except for BMP9, which was performed on

an earlier model Biacore T100 (GE Healthcare). Recombinant

human BMP2, BMP4, BMP5, BMP6, BMP7, BMP9, RGMA,

RGMB, HJV (RGMC), and ALK1-Fc were obtained from R&D

Systems in carrier-free forms. BMPs, RGMs and ALK1-Fc were

reconstituted in sterile PBS as 1 mg/ml stock solutions, except for

BMP6, which was supplied in Acetonitrile and TFA solution from

R&D Systems at concentrations from 0.535 mg/ml to 0.788 mg/ml
as indicated by the manufacturer.

BMP2, BMP4, BMP5, BMP6 and BMP9 were diluted in

sodium acetate pH 4.5 (GE Healthcare) and immobilized by the

amine coupling method on a CM5 sensor chip according to the

manufacturer’s protocol (GE Healthcare). BMP7 was immobilized

on a CM4 sensor chip using the same protocol. Flow cells 2

through 4 were immobilized with a ligand, and flow cell 1 was

equally treated but without protein as a control. The immobili-

zation levels of ligands ranged from 50 to 300 RU, determined

empirically to optimize each kinetics interaction and reduce mass

transport limitation. Low immobilization levels were used to

minimize possible mass transport limitation, and at least 2 different

immobilization levels were used for each interaction tested. In all

cases, data obtained from different immobilization levels showed

no significant difference. Analytes (RGMA, RGMB, HJV and

ALK1-Fc) were diluted in running buffer HBS-EP+ (GE

Healthcare) at concentrations ranging from 2 nM to 1200 nM,

generally with a series of five 2-fold escalations to a maximum

concentration about 10-fold higher than the KD, with occasional

variations as needed to improve fitting. Analytes were injected

through all channels at a flow rate of 30 ml/min, a flow rate

chosen from a mass transport limitation test to minimize mass

transport limitation, and above which further increases had no

significant impact on binding curves. Middle concentrations were

run in duplicate at the end of each multicycle run to confirm the

stability of the surface during each run. The association and

dissociation times were typically 240 seconds and 480 seconds,

occasionally modified where indicated to optimize each interac-

tion. The sensor surface was regenerated after each injection cycle

to allow interaction between surface and fresh ligands for the next

cycle. The regeneration condition was optimized by regeneration

scouting as Glycine-HCl pH 2.2 (GE Healthcare) at a flow rate of

50 ml/min for 30 seconds followed by 30 seconds of stabilization.

The sensograms of flow cells 2, 3, and 4 were subtracted from

the flow cell 1 control. The kinetic fitting was carried out with

Biacore T200 evaluation software by global fitting using 1:1

Langmuir binding model (A + B=AB). The kinetics data were

calculated as Kon (association rate), Koff (dissociation rate) and KD

(KD=Koff/Kon). Each SPR run was evaluated based on the

recommended range of several statistical measurements provided

by the Biacore T200 evaluation software including x2 (measures

how closely a model fits the experimental data); U value (indicates

if the parameters are uniquely decided); tc (a measure of mass

transport limitation); and T-values (analogous to signal-to-noise for

the fitted parameter values). All experiments were repeated

between 4–9 times.

Luciferase Assay
Soluble RGMA and HJV (lacking the GPI anchor) fused to the

Fc portion of human IgG (RGMA.Fc and HJV.Fc) were generated

[4,19] and purified [19] as previously described. Hepatoma-

derived Hep3B cells were transfected with the hepcidin promoter

firefly luciferase construct [5] and a control Renilla luciferase

vector (pRLTK, Promega). Transfected cells were incubated

alone, with BMP ligands (5 ng/ml BMP9, 50 ng/ml BMP5, or

25 ng/ml BMP2, BMP4, BMP6, or BMP7), or with the BMP

ligands plus 0.2 to 50 mg/ml RGMA.Fc or HJV.Fc, followed by

measurement of relative luciferase activity by dual luciferase assay

(Promega) as previously described [19].

Statistics
Statistical significance was determined by one-way analysis of

variance (ANOVA) with the Bonferroni’s or Dunnett’s post-hoc

tests for pair-wise multiple comparisons as indicated. Statistical

analysis was conducted using Prism 4.0 (La Jolla, CA) statistical

software and P,0.05 was considered significant.

Binding Kinetics of RGMs for BMPs
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Results

HJV Exhibits Preferential Binding to the BMP6/BMP5/
BMP7 Subfamily Compared with RGMA and RGMB, with
the Highest Affinity for BMP6
We have previously demonstrated that HJV binds to BMP6 and

that Bmp6 knockout mice exhibit an equivalent iron overload

phenotype to Hjv knockout mice suggesting that BMP6 is an

important endogenous ligand for HJV in the regulation of

hepcidin expression and systemic iron balance [18,34]. We

therefore quantitated the binding kinetics of HJV to BMP6 using

surface plasmon resonance (SPR). Results were compared with the

binding of other RGM family members (RGMA and RGMB) to

BMP6. Results were also compared to the closely related BMP5

and BMP7 ligands, which together with BMP6, share 71–80%

amino acid identity in the mature region and constitute a subfamily

of the BMP ligands [43]. Mean KD, Kon, and Koff from 4–9

experiments for each interaction are reported in Figure 1 and

Figure 2, while representative sensograms are shown in Figure S1,

Figure S2, and Figure S3.

As shown in Figure 1, HJV bound to BMP6 with high affinity

(KD 8.1 nM). In comparison, RGMB and RGMA bound to

BMP6 with about 3.5- and 5-fold lower affinity (KD 28 nM and

55 nM respectively) (Figure 1). The higher affinity of HJV for

BMP6 was due to a combination of a faster association rate and

slower dissociation rate compared with the other RGM proteins

(Figure 2).

HJV bound to BMP5 with about 2-fold lower affinity (KD

17 nM) than BMP6 (Figure 1). This lower affinity was mostly due

to a slower association rate of HJV for BMP5 compared with

Figure 1. Binding affinity of RGM proteins for BMP ligands. (A)
The binding affinity (KD = Koff/Kon) of each RGM protein for each BMP
ligand was measured by surface plasmon resonance and plotted as
mean6 SD (n = 4–9 per group). The mean KD 6 SD of RGM proteins for
BMP2 and BMP4 is also shown as an inset to better demonstrate their
lower KD values. The mean KD is reported numerically in (B). (A) Black
bar: HJV; gray bar: RGMB; white bar: RGMA. Statistical significance
among 3 RGM proteins for binding to each BMP ligand was determined
by one-way analysis of variance (ANOVA) with the Dunnett’s post-hoc
test for pair-wise multiple comparisons (* all comparisons are significant
(P,0.05)). For comparisons among 5 BMP ligands for binding to each
RGM protein, one-way ANOVA with the Bonferroni’s post-hoc test was
used (# all comparisons are significant (P,0.05); $ not all comparisons
are significant: for HJV, all pair-wise comparisons between BMP ligands
are significant except for BMP2 vs BMP6; for RGMB, all pair-wise
comparisons between BMP ligands are significant except for BMP2 vs
BMP4 and BMP5 vs BMP6; for RGMA, all pair-wise comparisons between
BMP ligands are significant except for BMP2 vs BMP4, BMP5 vs BMP7
and BMP6 vs BMP7.
doi:10.1371/journal.pone.0046307.g001

Figure 2. Association rate (Kon) and dissociation rate (Koff)
between RGM proteins and BMP ligands. The association rate (Kon,
A), and dissociation rate (Koff, B) between each RGM protein and each
BMP ligand was measured by SPR and plotted as mean 6 SD (n = 4–
9 per group). Black bar: HJV; gray bar: RGMB; white bar: RGMA.
Statistical significance was determined as described in Figure 1. For
comparisons among 3 RGM proteins for each BMP ligand: * all
comparisons are significant (P,0.05); & not all comparisons are
significant, as detailed below; NS all comparisons are not significant
(P.0.05). For comparisons among 5 BMP ligands for each RGM protein:
# all comparisons are significant (P,0.05); $ not all comparisons are
significant, as detailed below. (A) $: For HJV, all pair-wise comparisons
between BMP ligands are significant except for BMP2 vs BMP6, BMP5 vs
BMP6, and BMP5 vs BMP7; for RGMB, all pair-wise comparisons between
BMP ligands are significant except for BMP5 vs BMP6; for RGMA, all pair-
wise comparisons between BMP ligands are significant except for BMP2
vs BMP5. &: For BMP7, all pairwise comparisons are significant except
for HJV vs RGMA (B) $: For HJV, all pair-wise comparisons between BMP
ligands are significant except for BMP2 vs BMP5, BMP4 vs BMP5, BMP4
vs BMP6, and BMP5 vs BMP6; for RGMB, all pair-wise comparisons
between BMP ligands are significant except for BMP2 vs BMP7 and
BMP5 vs BMP6; for RGMA, all pair-wise comparisons between BMP
ligands are significant except for BMP2 vs BMP4, BMP2 vs BMP7, BMP4
vs BMP7, and BMP6 vs BMP7. &: For BMP7, all pairwise comparisons are
significant except for RGMB vs RGMA; for BMP2, all pairwise
comparisons are significant except for RGMA vs RGMB; for BMP4, all
pairwise comparisons are significant except for RGMB vs HJV.
doi:10.1371/journal.pone.0046307.g002

Binding Kinetics of RGMs for BMPs
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BMP6 (Figure 2). Similar to the results for BMP6, RGMB and

RGMA bound to BMP5 with about 2- and 5-fold lower affinity

(KD 33 nM and 83 nM respectively) compared with HJV

(Figure 1). RGMB binding to BMP5 was similar to BMP6, while

the lower affinity of RGMA for BMP5 compared with BMP6 was

mostly due to a faster dissociation rate (Figure 2).

All RGM proteins had lower or equivalent affinity for BMP7

compared with BMP6 or BMP5 (Figure 1). This was mainly due to

a slower association rate, although RGMs, particularly HJV, also

tended to have a slower dissociation rate for BMP7 (Figure 2).

These slower kinetics and the need for higher concentrations of

analyte yielded poor fitting of BMP7-RGM interactions on CM5

sensor chips, necessitating the use of CM4 sensor chips for these

interactions, which yielded reasonable fitting. As a control, we

obtained similar results for BMP6-HJV interaction on CM4 sensor

chips compared with CM5 sensor chips (data not shown). HJV

had the highest affinity for BMP7 among the RGMs (KD 20 nM)

followed by RGMA and RGMB (KD 63 nM and 166 nM

respectively) (Figure 1). This was mainly due to a very slow

dissociation rate of HJV for BMP7 (Figure 2).

RGMB Exhibits Preferential Binding to the BMP2/BMP4
Subfamily Compared with HJV and RGMA, with the
Highest Affinity for BMP4
Next, we tested the binding kinetics of RGM proteins for

another main subfamily of BMP ligands, BMP2 and BMP4, which

possess 86% amino acid identity to each other, but only 54–60%

identity to the BMP6/BMP5/BMP7 subfamily in the mature

region [43]. Mean KD, Kon, and Koff from 4–9 experiments for

each interaction are reported in Figure 1 and Figure 2, while

representative sensograms are shown in Figure S4 and Figure S5.

As shown in Figure 1, RGMB had the highest binding affinity

for BMP2 among the RGMs (KD 5.5 nM). This was about 5-30-

fold higher than the affinity of RGMB for the BMP6/BMP5/

BMP7 subfamily (Figure 1), mostly due to a faster association rate

(Figure 2). HJV had intermediate binding affinity for BMP2

among the RGM family (KD 9.4 nM), about 1.6-fold lower than

RGMB and about 2.5-fold higher than RGMA (Figure 1). In

contrast to RGMB, the affinity of HJV for BMP2 was nearly

identical to the binding affinity of HJV for BMP6 (Figure 1).

Similar to most of the other BMPs tested, RGMA exhibited the

lowest binding affinity among the RGMs for BMP2 (KD 22 nM,

Figure 1), mostly due to a slower association rate compared with

the other RGMs (Figure 2). RGMA was similar to RGMB in that

it exhibited preferential binding to BMP2 compared with the

BMP6/BMP5/BMP7 subfamily, about 2-4-fold higher (Figure 1).

This was due to a combination of a slower dissociation rate and

faster association rate of RGMA for BMP2 compared with the

BMP6/BMP5/BMP7 subfamily (Figure 2).

The relative affinity of RGM family members for BMP4 was

very similar to BMP2 (Figure 1). RGMB had the highest binding

affinity for BMP4 (KD 2.6 nM), about 2-fold higher than HJV (KD

4.5 nM) and 5–6-fold higher than RGMA (KD 14 nM) (Figure 1).

Interestingly, BMP4 had the highest affinity for all RGM proteins

relative to the other BMPs tested (Figure 1), mostly due to a faster

association rate, and, to a lesser extent, a slower dissociation rate

(Figure 2). The affinity of all of the RGMs for BMP4 was about 2-

fold higher than BMP2 (although this difference was not

statistically significant for RGMA or RGMB). Similar to the

results for BMP2, RGMB exhibited a strong preferential binding

to BMP4 compared with the BMP6/BMP5/BMP7 subfamily,

about 10- to 64-fold (Figure 1), mostly due to a faster association

rate (Figure 2). RGMA exhibited an intermediate preferential

binding for BMP4 compared with the BMP6/BMP5/BMP7

subfamily, about 4- to 6-fold (Figure 1), due to a combination of

a faster association rate and slower dissociation rate (Figure 2).

HJV bound to BMP4 with only about 2-4-fold higher affinity than

the BMP6/BMP5/BMP7 subfamily (Figure 1), mostly due to

a faster association rate (Figure 2).

RGM Family Members do not Bind BMP9
BMP9 exhibits 50–55% amino acid identity to BMP2, BMP4,

BMP5, BMP6, and BMP7 [44], and has also been demonstrated

to stimulate hepcidin expression in liver-derived cells in culture

[19]. We therefore tested the binding kinetics of HJV and other

RGM family members for BMP9 using SPR. In contrast to the

other BMP ligands tested, BMP9 did not bind to any of the RGM

family members (Figure S6A–C). As a positive control, BMP9 was

able to bind to the soluble portion of the BMP type I receptor

ALK1 fused to the Fc region of human IgG (ALK1-Fc, Figure

S6D), as previously demonstrated [45].

Soluble RGM Proteins Fused to the Fc Portion of Human
IgG (RGM.Fc) Selectively Inhibit the Biologic Activity of
BMP Ligands
To provide independent confirmation of the relative binding

affinities of RGM family members for BMP ligands measured by

SPR, we tested the ability of soluble RGMA.Fc fusion proteins to

inhibit the biologic activity of BMP ligands in a cell culture system.

Analogous data have previously been published for HJV.Fc and

RGMB.Fc [18–19]. The mechanism by which these RGM.Fc

fusion proteins inhibit BMP biologic activity is by binding and

sequestering BMPs to prevent them from interacting with cell

surface BMP receptors [19]. The biologic activity of BMP ligands

we studied was the ability to induce hepcidin promoter activity in

hepatoma-derived Hep3B cells as measured by dual luciferase

assay, which we have previously well characterized [19].

RGMA.Fc inhibited the biologic activity of BMP4 and BMP2

most robustly, with lesser inhibition of BMP5, BMP6, and BMP7,

and no inhibition of BMP9 (Figure 3A). In a head-to-head

comparison, HJV.Fc was more potent than RGMA.Fc at

inhibiting the biologic activity of BMP6 (Figure 3B). These

functional data in a cell culture system support the relative binding

constants measured by SPR (Figure 1).

Discussion

Here, we used SPR to perform the first comprehensive

quantitative comparison of the binding interactions between the

RGM family of BMP co-receptors and BMP ligands. We

demonstrated that RGM proteins exhibited a wide range of

binding affinities for BMP2, BMP4, BMP5, BMP6, and BMP7

ligands ranging from 2.6 nM to 166 nM, and none of the RGMs

bound to BMP9. One characteristic feature shared by all of the

RGM proteins is the order of preferential binding to the various

BMP ligands. All RGMs exhibited the highest binding affinity for

BMP4, followed in order by BMP2, BMP6, BMP5, and BMP7,

while none of the RGMs bound to BMP9. However, one notable

difference between the RGM proteins is that the binding affinity of

HJV for the BMP6/BMP5/BMP7 subfamily was significantly

higher than RGMB and RGMA, and was very close to the binding

affinity of HJV for BMP4 and BMP2. In contrast, RGMB and to

a lesser extent RGMA exhibited a much weaker binding to the

BMP6/BMP5/BMP7 subfamily compared with the BMP4/BMP2

subfamily, and compared with HJV.

Binding affinities have previously been reported for the

interaction between BMP2 and all RGM family members, and

BMP4 binding to RGMA in 4 prior studies [3,40,46–47]. An

Binding Kinetics of RGMs for BMPs

PLOS ONE | www.plosone.org 4 September 2012 | Volume 7 | Issue 9 | e46307



important limitation in 3 of these studies is the use of RGM.Fc

fusion proteins, which form dimers [3,40,46], whereas we used

monomeric proteins since HJV is predicted to be monomeric [47].

Therefore, results in these prior studies may be confounded by

avidity effects. One prior study measured the binding affinity of

monomeric HJV to BMP2 by SPR [47] and reported a 15-fold

lower affinity (KD 140 nM) compared to our study. However,

Yang et al. used an equilibrium based binding assay [47] rather

than binding kinetics as in our study, and real equilibrium may not

have been achieved in their study.

The relative binding constants measured by SPR in this study

are largely consistent with prior studies of the binding of RGM

proteins to BMP ligands, and the biologic activity of RGMs and

RGM.Fc fusion proteins in cell culture systems [3–5,18–19,40–

42]. Cell-free iodinated protein interaction and pull-down assays

have previously demonstrated that all RGMs bind to BMP2 and

BMP4, and that HJV binds to BMP6 [3–5,18]. For all RGMs,

excess cold BMP7 was unable to compete for binding to BMP2

and BMP4, suggesting preferential binding of RGMs to BMP2

and BMP4 versus BMP7 [3–5], consistent with the results in this

study.

Prior studies have also demonstrated that transfection of cDNAs

encoding each RGM increased BMP2 and BMP4 signaling, but

not BMP7 signaling, in cell culture systems [3–5,40–42].

Additionally, transfection of cDNAs encoding HJV, but not

RGMA or RGMB, mediated BMP6 signaling in cell culture

systems that expressed high levels of endogenous BMP6 [40–42].

Thus, all RGMs can mediate BMP2 and BMP4 signaling and

HJV can mediate BMP6 signaling in cell culture systems,

consistent with the highest binding affinities measured for these

interactions by SPR in this study.

Biologic inhibition assays in hepatoma-derived cell cultures

using soluble RGM.Fc fusion proteins to inhibit BMP ligand-

mediated hepcidin promoter luciferase activity have previously

demonstrated that HJV.Fc inhibited BMP4, BMP2, BMP6 and

BMP5 most robustly with lesser inhibition of BMP7 and no

inhibition of BMP9 [19], while RGMB.Fc inhibited BMP4 and

BMP2 most robustly, with lesser inhibition of BMP6, BMP5, and

BMP7 and no inhibition of BMP9 [18]. In a head-to-head

comparison, HJV.Fc inhibited BMP6 more robustly than

RGMB.Fc [18]. Together with the biological inhibition data

using RGMA.Fc here (Figure 3), these data overall support the

relative binding affinities measured by SPR in this study (Figure 1).

These data also provide further insight into a potential therapeutic

role for exogenously administered RGM.Fc proteins as selective

BMP signaling pathway inhibitors. For example, HJV.Fc has been

previously demonstrated to inhibit BMP-mediated hepcidin

expression and improve iron availability in vivo [18–19,39]. These

data may also shed light on a functional role for endogenous forms

of soluble RGM proteins as selective BMP pathway inhibitors,

particularly HJV, which has been found in measurable levels in

circulation [12,48–50].

Interestingly, all RGMs were demonstrated to bind to BMP7 by

SPR in the current study, whereas BMP7 was unable to compete

with BMP2 and BMP4 for RGM binding in iodinated protein

interaction studies [3–5], RGMs were not demonstrated to

increase BMP7 signaling in cell culture systems [40–42], and

RGM.Fc proteins demonstrated only a limited ability to inhibit the

biological activity of BMP7 in hepcidin promoter luciferase cell

culture assays (Figure 3) [18–19]. This was particularly notable for

HJV, where the overall affinity of the HJV-BMP7 interaction was

only about 2.5-fold lower than that for the HJV-BMP6 interaction

by SPR, while HJV.Fc was much less potent at inhibiting BMP7

compared with BMP6 activity in the hepcidin promoter luciferase

assays [19]. One explanation for these differences is the slow

kinetics of the RGM-BMP7 interactions. The reason for the

relatively higher overall affinity for the HJV-BMP7 interaction

measured by SPR was the very slow dissociation rate. However, all

RGM-BMP7 interactions had a very slow association rate, and

this slow association rate may have been the limiting factor

precluding any apparent biologic activity of RGM-BMP7 inter-

actions in the binding competition and cell culture assays. Second,

there may have been avidity effects from the use of dimeric

RGM.Fc fusion proteins in the biologic inhibition assays, while

RGM monomers were used in SPR. Additionally, the binding

characteristics of RGMs to BMP ligands in solution in the biologic

assays may be different compared with BMP ligands that are

covalently bound to sensor chips in SPR. Finally, the inability of

BMP7 to compete for BMP2 and BMP4 binding could also be

explained by nonoverlapping binding sites for BMP7 and BMP2/

BMP4 on RGMs. Future studies will be needed to delineate the

precise BMP binding domain(s) on RGMs, and whether the ability

Figure 3. Soluble RGMA.Fc selectively inhibits BMP induction
of hepcidin promoter luciferase activity. (A) Hep3B cells were
transfected with the hepcidin promoter firefly luciferase construct and
the control Renilla pRL-TK vector. Transfected cells were incubated
alone, with 5 ng/ml BMP9, 50 ng/ml BMP5, or 25 ng/ml BMP2, BMP4,
BMP6, or BMP7 ligands, or with the BMP ligands plus 0.2 to 50 mg/ml
RGMA.Fc as indicated, followed by measurement of relative luciferase
activity. (B) Hep3B cells were transfected as indicated in Panel A.
Transfected cells were incubated alone, with 25 ng/ml BMP6 ligand, or
with 25 ng/mL BMP6 ligand plus 0.2 to 50 mg/ml RGMA.Fc or HJV.Fc as
indicated followed by measurement of relative luciferase activity. (A–B)
Results are reported as the mean 6 SD of the percent decrease in
relative luciferase activity for cells treated with BMP ligands in
combination with RGMA.Fc or HJV.Fc compared with cells treated with
BMP ligands alone (n = 3–4 per group).
doi:10.1371/journal.pone.0046307.g003

Binding Kinetics of RGMs for BMPs

PLOS ONE | www.plosone.org 5 September 2012 | Volume 7 | Issue 9 | e46307



of RGMs to bind BMP7 measured by SPR correlates with any

biologic activity.

Among the RGMs, HJV had the highest binding affinity for

BMP6 at 8.1 nM. This is consistent with data from a biologic

inhibition assay showing that soluble HJV.Fc fusion protein

inhibited BMP6 induction of hepcidin promoter luciferase activity

more strongly than RGMB.Fc [19] and RGMA.Fc (Figure 3). This

is also consistent with the known physiologic role of HJV and

BMP6 in vivo in regulating liver hepcidin expression and systemic

iron balance [5,7,18–21,34]. Indeed, it is not surprising that HJV

expression is critical for BMP6-mediated induction of hepcidin in

response to iron given the relatively low affinity (KD 1.6 to 39 mM)

of BMP6 for the BMP type I and type II receptors that have been

demonstrated to be involved in this process [41,51]. We

hypothesize that expression of HJV in hepatocytes enables these

cells to respond specifically to low levels of BMP6 that are

produced in the liver in response to iron to stimulate hepcidin

expression. The significantly lower affinity of RGMB and RGMA

for BMP6 may help explain why these proteins cannot compensate

for the loss of HJV in regulating hepcidin expression and systemic

iron balance. Of note, HJV bound to BMP2 and BMP4 with equal

or 2-fold higher affinity than BMP6. Additionally, HJV also

exhibited preferential binding to BMP5 and BMP7 compared with

RGMB and RGMA. These data raise the possibility that HJV

could also have a role in regulating signaling by binding to one or

more of these other BMP ligands. Interestingly, BMP2 was

recently postulated to have a role in upregulating hepcidin

expression in multiple myeloma [52].

RGMB knockout mice exhibit early postnatal death, confirming

an important biologic function for RGMB, but the cause of this

premature death is still poorly understood [32]. RGMB has also

been implicated in axonal regeneration after injury [33], the

regulation of inflammatory cytokine expression in immune cells

[32], and renal tubule tight junction formation and transepithelial

resistance [42], all of which appear to be mediated by RGMB’s

BMP signaling function [32–33,42]. Notably, BMP4 and BMP2

ligands have been implicated in these processes [32–33,42],

consistent with the preferential affinity of RGMB for BMP4 and

BMP2 compared with HJV and RGMA and the other BMP

ligands.

RGMA has been demonstrated to mediate repulsive axonal

guidance (giving rise to the family name), neural tube closure,

neuronal differentiation, cell survival, inflammation and immune

cell function [2,6,9,22–31]. Many of these actions depend on an

interaction with neogenin, a homologue of the netrin receptor

deleted in colon cancer [23–24,26–30], while the BMP signaling

function of RGMA has not been clearly linked to its observed

biologic actions. Notably, RGMA exhibited the lowest affinity for

most of the BMP ligands tested relative to other RGM family

members, with the exception of slightly higher affinity for BMP7

compared with RGMB (which were the 2 lowest affinity

interaction measured). Thus, RGMA may have a less prominent

role as a BMP co-receptor compared with the other RGM

proteins. Nevertheless, RGMA still exhibits a binding affinity as

low as 14 nM to 23 nM to the BMP4/BMP2 subfamily, which

leaves open a possible physiologic role for the BMP signaling

function of RGMA.

In summary, the members of the RGM family of BMP co-

receptors exhibit preferential binding for different subsets of BMP

ligands. Relative to other RGMs, HJV has the highest affinity for

binding to BMP6, consistent with the important physiologic role of

HJV-mediated BMP6 signaling in regulating iron homeostasis.

These data provide important insights into mechanisms by which

BMP signals are finely tuned to exert cell-specific effects.

Supporting Information

Figure S1 Representative sensograms of kinetics ex-
periments between BMP6 and RGM proteins by SPR. (A)
HJV protein was diluted in running buffer HBS-EP+ into a series

of concentration (6.25, 12.5, 25, 50 and 100 nM) and injected

through CM5 chip immobilized with BMP6 at a density of

87.5 RU. (B) RGMB protein was diluted in running buffer HBS-

EP+ into a series of concentration (18.75, 37.5, 75, 150 and

300 nM) and injected through CM5 chip immobilized with BMP6

at a density of 287.3 RU. (C) RGMA protein was diluted in

running buffer HBS-EP+ into a series of concentration (30, 75,

150, 300 and 600 nM) and injected through CM5 chip

immobilized with BMP6 at a density of 150 RU. (A–C) Color

lines represent the fitted curves plotted from the 1:1 Langmuir

binding model and the black line represents the experimental

curves. The kinetics data (KD, Kon, and Koff) and quality control

parameters (x2, U, T(Kon) and T(Koff)) are shown in the tables

below each sensogram.

(TIF)

Figure S2 Representative sensograms of kinetics ex-
periments between BMP5 and RGM proteins by SPR. (A)
HJV protein was diluted in running buffer HBS-EP+ into a series

of concentration (10, 20, 40, 80 and 160 nM) and injected through

CM5 chip immobilized with BMP5 at a density of 287.4 RU. (B)
RGMB protein was diluted in running buffer HBS-EP+ into

a series of concentration (12.5, 25, 50, 100 and 200 nM) and

injected through CM5 chip immobilized with BMP5 at a density

of 527.5 RU. (C) RGMA protein was diluted in running buffer

HBS-EP+ into a series of concentration (50, 100, 200, 400 and

800 nM) and injected through CM5 chip immobilized with BMP5

at a density of 436.1 RU. (A–C) Color lines represent the fitted

curves plotted from the 1:1 Langmuir binding model and the black

line represents the experimental curves. The kinetics data (KD,

Kon, and Koff) and quality control parameters (x2, U, T(Kon) and

T(Koff)) are shown in the tables below each sensogram.

(TIF)

Figure S3 Representative sensograms of kinetics ex-
periments between BMP7 and RGM proteins by SPR. (A)
HJV protein was diluted in running buffer HBS-EP+ into a series

of concentration (50, 100, 200, 400 and 800 nM) and injected

through CM4 chip immobilized with BMP7 at a density of

284.9 RU. (B) RGMB protein was diluted in running buffer HBS-

EP+ into a series of concentration (18.75, 37.5, 75, 150 and

300 nM) and injected through CM4 chip immobilized with BMP7

at a density of 365.6 RU. (C) RGMA protein was diluted in

running buffer HBS-EP+ into a series of concentration (75, 150,

300, 600 and 1200 nM) and injected through CM4 chip

immobilized with BMP7 at a density of 286.9 RU. (A–C) Color
lines represent the fitted curves plotted from the 1:1 Langmuir

binding model and the black line represents the experimental

curves. The kinetics data (KD, Kon, and Koff) and quality control

parameters (x2, U, T(Kon) and T(Koff)) are shown in the tables

below each sensogram.

(TIF)

Figure S4 Representative sensograms of kinetics ex-
periments between BMP2 and RGM proteins by SPR. (A)
HJV protein was diluted in running buffer HBS-EP+ into a series

of concentration (6.25, 12.5, 25, 50 and 100 nM) and injected

through CM5 chip immobilized with BMP2 at a density of

118 RU. (B) RGMB protein was diluted in running buffer HBS-

EP+ into a series of concentration (2, 4, 8, 15 and 30 nM) and

injected through CM5 chip immobilized with BMP2 at a density
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of 198.5 RU. (C) RGMA protein was diluted in running buffer

HBS-EP+ into a series of concentration (10, 20, 40, 80 and

160 nM) and injected through CM5 chip immobilized with BMP2

at a density of 198.5 RU. (A–C) Color lines represent the fitted

curves plotted from the 1:1 Langmuir binding model and the black

line represents the experimental curves. The kinetics data (KD,

Kon, and Koff) and quality control parameters (x2, U, T(Kon) and

T(Koff)) are shown in the tables below each sensogram.

(TIF)

Figure S5 Representative sensograms of kinetics ex-
periments between BMP4 and RGM proteins by SPR. (A)
HJV protein was diluted in running buffer HBS-EP+ into a series

of concentration (5, 10, 20, 40 and 80 nM) and injected through

CM5 chip immobilized with BMP4 at a density of 40.2 RU. (B)
RGMB protein was diluted in running buffer HBS-EP+ into

a series of concentration (2, 4, 8, 16 and 32 nM) and injected

through CM5 chip immobilized with BMP4 at a density of

96.1 RU. (C) RGMA protein was diluted in running buffer HBS-

EP+ into a series of concentration (10, 20, 40, 80 and 160 nM) and

injected through CM5 chip immobilized with BMP4 at a density

of 95.2 RU. (A–C) Color lines represent the fitted curves plotted

from the 1:1 Langmuir binding model and the black line

represents the experimental curves. The kinetics data (KD, Kon,

and Koff) and quality control parameters (x2, U, T(Kon) and

T(Koff)) are shown in the tables below each sensogram.

(TIF)

Figure S6 Representative sensograms of kinetics ex-
periments between BMP9 and RGM proteins, and BMP9
binding to ALK1-Fc by SPR. (A) HJV protein was diluted in

running buffer HBS-EP+ into a series of concentration (10, 25, 50,

100 and 200 nM) and injected through CM5 chip immobilized

with BMP9 at a density of 139.1 RU. (B) RGMB protein was

diluted in running buffer HBS-EP+ into a series of concentration

(2, 4, 8, 15 and 30 nM) and injected through CM5 chip

immobilized with BMP9 at a density of 160.7 RU. (C) RGMA

protein was diluted in running buffer HBS-EP+ into a series of

concentration (6, 12, 25, 50 and 100 nM) and injected through

CM5 chip immobilized with BMP9 at a density of 160.7 RU. (A–
C) No significant binding was detected and kinetics data cannot be

calculated. (D) ALK1-Fc protein was diluted in running buffer

HBS-EP+ into 100 nM and injected through CM5 chip

immobilized with BMP9 at a density of 160.7 RU.

(TIF)
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