5,358 research outputs found

    Theoretical description of a DNA-linked nanoparticle self-assembly

    Full text link
    Nanoparticles tethered with DNA strands are promising building blocks for bottom-up nanotechnology, and a theoretical understanding is important for future development. Here we build on approaches developed in polymer physics to provide theoretical descriptions for the equilibrium clustering and dynamics, as well as the self-assembly kinetics of DNA-linked nanoparticles. Striking agreement is observed between the theory and molecular modeling of DNA tethered nanoparticles.Comment: Accepted for publication in Physical Review Letter

    Entangled-State Cycles of Atomic Collective-Spin States

    Full text link
    We study quantum trajectories of collective atomic spin states of NN effective two-level atoms driven with laser and cavity fields. We show that interesting ``entangled-state cycles'' arise probabilistically when the (Raman) transition rates between the two atomic levels are set equal. For odd (even) NN, there are (N+1)/2(N+1)/2 (N/2N/2) possible cycles. During each cycle the NN-qubit state switches, with each cavity photon emission, between the states (N/2,m>±N/2,m>)/2(|N/2,m>\pm |N/2,-m>)/\sqrt{2}, where N/2,m>|N/2,m> is a Dicke state in a rotated collective basis. The quantum number mm (>0>0), which distinguishes the particular cycle, is determined by the photon counting record and varies randomly from one trajectory to the next. For even NN it is also possible, under the same conditions, to prepare probabilistically (but in steady state) the Dicke state N/2,0>|N/2,0>, i.e., an NN-qubit state with N/2N/2 excitations, which is of particular interest in the context of multipartite entanglement.Comment: 10 pages, 9 figure

    Tunable magnetic interaction at the atomic scale in oxide heterostructures

    Full text link
    We report on a systematic study of a number of structurally identical but chemically distinct transition metal oxides in order to determine how the material-specific properties such as the composition and the strain affect the properties at the interface of heterostructures. Our study considers a series of structures containing two layers of ferromagnetic SrRuO3, with antiferromagnetic insulating manganites sandwiched in between. The results demonstrate how to control the strength and relative orientation of interfacial ferromagnetism in correlated electron materials by means of valence state variation and substrate-induced strain, respectively

    Hydrodynamic View of Wave-Packet Interference: Quantum Caves

    Get PDF
    Wave-packet interference is investigated within the complex quantum Hamilton-Jacobi formalism using a hydrodynamic description. Quantum interference leads to the formation of the topological structure of quantum caves in space-time Argand plots. These caves consist of the vortical and stagnation tubes originating from the isosurfaces of the amplitude of the wave function and its first derivative. Complex quantum trajectories display counterclockwise helical wrapping around the stagnation tubes and hyperbolic deflection near the vortical tubes. The string of alternating stagnation and vortical tubes is sufficient to generate divergent trajectories. Moreover, the average wrapping time for trajectories and the rotational rate of the nodal line in the complex plane can be used to define the lifetime for interference features.Comment: 4 pages, 3 figures (major revisions with respect to the previous version have been carried out

    Spin- and charge-density waves in the Hartree-Fock ground state of the two-dimensional Hubbard model

    Full text link
    The ground states of the two-dimensional repulsive Hubbard model are studied within the unrestricted Hartree-Fock (UHF) theory. Magnetic and charge properties are determined by systematic, large-scale, exact numerical calculations, and quantified as a function of electron doping hh. In the solution of the self-consistent UHF equations, multiple initial configurations and simulated annealing are used to facilitate convergence to the global minimum. New approaches are employed to minimize finite-size effects in order to reach the thermodynamic limit. At low to moderate interacting strengths and low doping, the UHF ground state is a linear spin-density wave (l-SDW), with antiferromagnetic order and a modulating wave. The wavelength of the modulating wave is 2/h2/h. Corresponding charge order exists but is substantially weaker than the spin order, hence holes are mobile. As the interaction is increased, the l-SDW states evolves into several different phases, with the holes eventually becoming localized. A simple pairing model is presented with analytic calculations for low interaction strength and small doping, to help understand the numerical results and provide a physical picture for the properties of the SDW ground state. By comparison with recent many-body calculations, it is shown that, for intermediate interactions, the UHF solution provides a good description of the magnetic correlations in the true ground state of the Hubbard model.Comment: 13 pages, 17 figure, 0 table

    Experimental procedures for precision measurements of the Casimir force with an Atomic Force Microscope

    Full text link
    Experimental methods and procedures required for precision measurements of the Casimir force are presented. In particular, the best practices for obtaining stable cantilevers, calibration of the cantilever, correction of thermal and mechanical drift, measuring the contact separation, sphere radius and the roughness are discussed.Comment: 14 pages, 7 figure

    Composite-fermion crystallites in quantum dots

    Full text link
    The correlations in the ground state of interacting electrons in a two-dimensional quantum dot in a high magnetic field are known to undergo a qualitative change from liquid-like to crystal-like as the total angular momentum becomes large. We show that the composite-fermion theory provides an excellent account of the states in both regimes. The quantum mechanical formation of composite fermions with a large number of attached vortices automatically generates omposite fermion crystallites in finite quantum dots.Comment: 5 pages, 3 figure

    Time-dependent Ginzburg-Landau equations for mixed d- and s-wave superconductors

    Get PDF
    A set of coupled time-dependent Ginzburg-Landau equations (TDGL) for superconductors of mixed d- and s-wave symmetry are derived microscopically from the Gor'kov equations by using the analytical continuation technique. The scattering effects due to impurities with both nonmagnetic and magnetic interactions are considered. We find that the d- and s-wave components of the order parameter can have very different relaxation times in the presence of nonmagnetic impurities. This result is contrary to a set of phenomenologically proposed TDGL equations and thus may lead to new physics in the dynamics of flux motion.Comment: 22 pages, 6 figures are available upon request, to appear in Phys. Rev.

    Symbiotic Bright Solitary Wave Solutions of Coupled Nonlinear Schrodinger Equations

    Full text link
    Conventionally, bright solitary wave solutions can be obtained in self-focusing nonlinear Schrodinger equations with attractive self-interaction. However, when self-interaction becomes repulsive, it seems impossible to have bright solitary wave solution. Here we show that there exists symbiotic bright solitary wave solution of coupled nonlinear Schrodinger equations with repulsive self-interaction but strongly attractive interspecies interaction. For such coupled nonlinear Schrodinger equations in two and three dimensional domains, we prove the existence of least energy solutions and study the location and configuration of symbiotic bright solitons. We use Nehari's manifold to construct least energy solutions and derive their asymptotic behaviors by some techniques of singular perturbation problems.Comment: to appear in Nonlinearit
    corecore