8,383 research outputs found

    LM radar reflectivity simulation Final report

    Get PDF
    Ultrasonic simulation of lunar module radar reflectivit

    Ignition and Front Propagation in Polymer Electrolyte Membrane Fuel Cells

    Full text link
    Water produced in a Polymer Electrolyte Membrane (PEM) fuel cell enhances membrane proton conductivity; this positive feedback loop can lead to current ignition. Using a segmented anode fuel cell we study the effect of gas phase convection and membrane diffusion of water on the spatiotemporal nonlinear dynamics - localized ignition and front propagation - in the cell. Co-current gas flow causes ignition at the cell outlet, and membrane diffusion causes the front to slowly propagate to the inlet; counter-current flow causes ignition in the interior of the cell, with the fronts subsequently spreading towards both inlets. These instabilities critically affect fuel cell performance

    Storm‐time configuration of the inner magnetosphere: Lyon‐Fedder‐Mobarry MHD code, Tsyganenko model, and GOES observations

    Get PDF
    [1] We compare global magnetohydrodynamic (MHD) simulation results with an empirical model and observations to understand the magnetic field configuration and plasma distribution in the inner magnetosphere, especially during geomagnetic storms. The physics-based Lyon-Fedder-Mobarry (LFM) code simulates Earth\u27s magnetospheric topology and dynamics by solving the equations of ideal MHD. Quantitative comparisons of simulated events with observations reveal strengths and possible limitations and suggest ways to improve the LFM code. Here we present a case study that compares the LFM code to both a semiempirical magnetic field model and to geosynchronous measurements from GOES satellites. During a magnetic cloud event, the simulation and model predictions compare well qualitatively with observations, except during storm main phase. Quantitative statistical studies of the MHD simulation shows that MHD field lines are consistently under-stretched, especially during storm time (Dst \u3c −20 nT) on the nightside, a likely consequence of an insufficient representation of the inner magnetosphere current systems in ideal MHD. We discuss two approaches for improving the LFM result: increasing the simulation spatial resolution and coupling LFM with a ring current model based on drift physics (i.e., the Rice Convection Model (RCM)). We show that a higher spatial resolution LFM code better predicts geosynchronous magnetic fields (not only the average Bz component but also higher-frequency fluctuations driven by the solar wind). An early version of the LFM/RCM coupled code, which runs so far only for idealized events, yields a much-improved ring current, quantifiable by decreased field strengths at all local times compared to the LFM-only code

    Entangled-State Cycles of Atomic Collective-Spin States

    Full text link
    We study quantum trajectories of collective atomic spin states of NN effective two-level atoms driven with laser and cavity fields. We show that interesting ``entangled-state cycles'' arise probabilistically when the (Raman) transition rates between the two atomic levels are set equal. For odd (even) NN, there are (N+1)/2(N+1)/2 (N/2N/2) possible cycles. During each cycle the NN-qubit state switches, with each cavity photon emission, between the states (N/2,m>±N/2,m>)/2(|N/2,m>\pm |N/2,-m>)/\sqrt{2}, where N/2,m>|N/2,m> is a Dicke state in a rotated collective basis. The quantum number mm (>0>0), which distinguishes the particular cycle, is determined by the photon counting record and varies randomly from one trajectory to the next. For even NN it is also possible, under the same conditions, to prepare probabilistically (but in steady state) the Dicke state N/2,0>|N/2,0>, i.e., an NN-qubit state with N/2N/2 excitations, which is of particular interest in the context of multipartite entanglement.Comment: 10 pages, 9 figure

    Prevalence of headache among handheld cellular telephone users in Singapore: a community study.

    Get PDF
    We carried out a cross-sectional community study in Singapore to determine the prevalence of specific central nervous system (CNS) symptoms among hand-held cellular telephone (HP) users compared to nonusers and to study the association of risk factors and CNS symptoms among HP users. A total of 808 men and women between 12 and 70 years of age, who lived in one community, were selected using one-stage cluster random sampling and responses to a structured questionnaire. The prevalence of HP users was 44.8%. Headache was the most prevalent symptom among HP users compared to non-HP users, with an adjusted prevalence rate ratio of 1.31 [95% confidence interval, 1.00-1.70]. There is a significant increase in the prevalence of headache with increasing duration of usage (in minutes per day). Prevalence of headache was reduced by more than 20% among those who used hand-free equipment for their cellular telephones as compared to those who never use the equipment. The use of HPs is not associated with a significant increase of CNS symptoms other than headache

    Coupling Between An Optical Phonon and the Kondo Effect

    Full text link
    We explore the ultra-fast optical response of Yb_{14}MnSb_{11}, providing further evidence that this Zintl compound is the first ferromagnetic, under-screened Kondo lattice. These experiments also provide the first demonstration of coupling between an optical phonon mode and the Kondo effect.Comment: 4 Pages, 3 Figures, submitted to Phys. Rev. Let

    Observation of the spontaneous vortex phase in the weakly ferromagnetic superconductor ErNi2_{2}B2_{2}C: A penetration depth study

    Full text link
    The coexistence of weak ferromagnetism and superconductivity in ErNi2_{2}B2% _{2}C suggests the possibility of a spontaneous vortex phase (SVP) in which vortices appear in the absence of an external field. We report evidence for the long-sought SVP from the in-plane magnetic penetration depth Δλ(T)\Delta \lambda (T) of high-quality single crystals of ErNi2_{2}B2_{2}C. In addition to expected features at the N\'{e}el temperature TNT_{N} = 6.0 K and weak ferromagnetic onset at TWFM=2.3T_{WFM}=2.3 K, Δλ(T)\Delta \lambda (T) rises to a maximum at Tm=0.45T_{m}=0.45 K before dropping sharply down to \sim 0.1 K. We assign the 0.45 K-maximum to the proliferation and freezing of spontaneous vortices. A model proposed by Koshelev and Vinokur explains the increasing Δλ(T)\Delta \lambda (T) as a consequence of increasing vortex density, and its subsequent decrease below TmT_{m} as defect pinning suppresses vortex hopping.Comment: 5 pages including figures; added inset to Figure 2; significant revisions to tex
    corecore