7,578 research outputs found

    A study of earth radar returns from Alouette satellite

    Get PDF
    Ground radar reflection coefficient analysis on Alouette sounder ionogram

    Theoretical study of nuclear spin polarization and depolarization in self-assembled quantum dots

    Full text link
    We investigate how the strain-induced nuclear quadrupole interaction influences the degree of nuclear spin polarization in self-assembled quantum dots. Our calculation shows that the achievable nuclear spin polarization in In_{x}Ga_{1-x}As quantum dots is related to the concentration of indium and the resulting strain distribution in the dots. The interplay between the nuclear quadrupole interaction and Zeeman splitting leads to interesting features in the magnetic field dependence of the nuclear spin polarization. Our results are in qualitative agreement with measured nuclear spin polarization by various experimental groups.Comment: 14 pages, 13 figures, submitted to Physical Review

    Modelling the Extreme X-ray Spectrum of IRAS 13224-3809

    Get PDF
    The extreme NLS1 galaxy IRAS 13224-3809 shows significant variability, frequency depended time lags, and strong Fe K line and Fe L features in the long 2011 XMM-Newton observation. In this work we study the spectral properties of IRAS 13224-3809 in detail, and carry out a series of analyses to probe the nature of the source, focusing in particular on the spectral variability exhibited. The RGS spectrum shows no obvious signatures of absorption by partially ionised material (warm absorbers). We fit the 0.3-10.0 keV spectra with a model that includes relativistic reflection from the inner accretion disc, a standard powerlaw AGN continuum, and a low-temperature (~0.1 keV) blackbody, which may originate in the accretion disc, either as direct or reprocessed thermal emission. We find that the reflection model explains the time-averaged spectrum well, and we also undertake flux-resolved and time-resolved spectral analyses, which provide evidence of gravitational light-bending effects. Additionally, the temperature and flux of the blackbody component are found to follow the LT4L\propto T^{4} relation expected for simple thermal blackbody emission from a constant emitting area, indicating a physical origin for this component.Comment: 12 pages, 7 figures, accepted for publication in MNRA

    Comments on SUSY inflation models on the brane

    Full text link
    In this paper we consider a class of inflation models on the brane where the dominant part of the inflaton scalar potential does not depend on the inflaton field value during inflation. In particular, we consider supernatural inflation, its hilltop version, A-term inflation, and supersymmetric (SUSY) D- and F-term hybrid inflation on the brane. We show that the parameter space can be broadened, the inflation scale generally can be lowered, and still possible to have the spectral index ns=0.96n_s=0.96.Comment: 7 page

    Predicting magnetopause crossings at geosynchronous orbit during the Halloween storms

    Get PDF
    [1] In late October and early November of 2003, the Sun unleashed a powerful series of events known as the Halloween storms. The coronal mass ejections launched by the Sun produced several severe compressions of the magnetosphere that moved the magnetopause inside of geosynchronous orbit. Such events are of interest to satellite operators, and the ability to predict magnetopause crossings along a given orbit is an important space weather capability. In this paper we compare geosynchronous observations of magnetopause crossings during the Halloween storms to crossings determined from the Lyon-Fedder-Mobarry global magnetohydrodynamic simulation of the magnetosphere as well to predictions of several empirical models of the magnetopause position. We calculate basic statistical information about the predictions as well as several standard skill scores. We find that the current Lyon-Fedder-Mobarry simulation of the storm provides a slightly better prediction of the magnetopause position than the empirical models we examined for the extreme conditions present in this study. While this is not surprising, given that conditions during the Halloween storms were well outside the parameter space of the empirical models, it does point out the need for physics-based models that can predict the effects of the most extreme events that are of significant interest to users of space weather forecasts

    Coupling Between An Optical Phonon and the Kondo Effect

    Full text link
    We explore the ultra-fast optical response of Yb_{14}MnSb_{11}, providing further evidence that this Zintl compound is the first ferromagnetic, under-screened Kondo lattice. These experiments also provide the first demonstration of coupling between an optical phonon mode and the Kondo effect.Comment: 4 Pages, 3 Figures, submitted to Phys. Rev. Let

    The Design of the Monitoring System for the Thermal Effect of the Surry Nuclear Power Plant on the James River

    Get PDF
    The demand for electric power in the United States is expected to double every 10 years. As hydroelectric power plant sites reach their full capacity, the demand for electricity will be met by the development of fossil fuel and nuclear power plants. The average thermal efficiency of nuclear power plants is presently about 32%. Therefore, a significant amount of heat is not utilized. For large power plants, the once-through cooling method, in which water is withdrawn from an adjacent body of water and returned after being heated, is the most common one. However, the great amount of heat discharged into the water may result in changes in the physical and chemical properties as well as in the ecology due to the rise in temperature of the water. The objectives of this study is to determine the region of the James River estuary which will be affected by the thermal discharges of the Surry nuclear power plant located at Hog Island and the temperature distribution within that region. The area under study is shown in figure 1. The cooling water is pumped in from the James River at the right side of Hog Island and returned at the left side. The following is a progress report of the first year\u27s work on this project

    Genome-wide identification of FoxO-dependent gene networks in skeletal muscle during C26 cancer cachexia

    Get PDF
    BACKGROUND: Evidence from cachectic cancer patients and animal models of cancer cachexia supports the involvement of Forkhead box O (FoxO) transcription factors in driving cancer-induced skeletal muscle wasting. However, the genome-wide gene networks and associated biological processes regulated by FoxO during cancer cachexia are unknown. We hypothesize that FoxO is a central upstream regulator of diverse gene networks in skeletal muscle during cancer that may act coordinately to promote the wasting phenotype. METHODS: To inhibit endogenous FoxO DNA-binding, we transduced limb and diaphragm muscles of mice with AAV9 containing the cDNA for a dominant negative (d.n.) FoxO protein (or GFP control). The d.n.FoxO construct consists of only the FoxO3a DNA-binding domain that is highly homologous to that of FoxO1 and FoxO4, and which outcompetes and blocks endogenous FoxO DNA binding. Mice were subsequently inoculated with Colon-26 (C26) cells and muscles harvested 26 days later. RESULTS: Blocking FoxO prevented C26-induced muscle fiber atrophy of both locomotor muscles and the diaphragm and significantly spared force deficits. This sparing of muscle size and function was associated with the differential regulation of 543 transcripts (out of 2,093) which changed in response to C26. Bioinformatics analysis of upregulated gene transcripts that required FoxO revealed enrichment of the proteasome, AP-1 and IL-6 pathways, and included several atrophy-related transcription factors, including Stat3, Fos, and Cebpb. FoxO was also necessary for the cancer-induced downregulation of several gene transcripts that were enriched for extracellular matrix and sarcomere protein-encoding genes. We validated these findings in limb muscles and the diaphragm through qRT-PCR, and further demonstrate that FoxO1 and/or FoxO3a are sufficient to increase Stat3, Fos, Cebpb, and the C/EBPβ target gene, Ubr2. Analysis of the Cebpb proximal promoter revealed two bona fide FoxO binding elements, which we further establish are necessary for Cebpb promoter activation in response to IL-6, a predominant cytokine in the C26 cancer model. CONCLUSIONS: These findings provide new evidence that FoxO-dependent transcription is a central node controlling diverse gene networks in skeletal muscle during cancer cachexia, and identifies novel candidate genes and networks for further investigation as causative factors in cancer-induced wasting.R01 AR060217 - NIAMS NIH HHS; R01 AR060209 - NIAMS NIH HHS; T32 HD043730 - NICHD NIH HHS; R00 HL098453 - NHLBI NIH HHS; R00HL098453 - NHLBI NIH HHS; R01AR060209 - NIAMS NIH HHS; R01AR060217 - NIAMS NIH HH

    Analyzing and Forecasting Volatility Spillovers and Asymmetries in Major Crude Oil Spot, Forward and Futures Markets

    Get PDF
    Crude oil price volatility has been analyzed extensively for organized spot, forward and futures markets for well over a decade, and is crucial for forecasting volatility and Value-at-Risk (VaR). There are four major benchmarks in the international oil market, namely West Texas Intermediate (USA), Brent (North Sea), Dubai/Oman (Middle East), and Tapis (Asia-Pacific), which are likely to be highly correlated. This paper analyses the volatility spillover and asymmetric effects across and within the four markets, using three multivariate GARCH models, namely the constant conditional correlation (CCC), vector ARMA-GARCH (VARMA-GARCH) and vector ARMA-asymmetric GARCH (VARMA-AGARCH) models. A rolling window approach is used to forecast the 1-day ahead conditional correlations. The paper presents evidence of volatility spillovers and asymmetric effects on the conditional variances for most pairs of series. In addition, the forecast conditional correlations between pairs of crude oil returns have both positive and negative trends. Moreover, the optimal hedge ratios and optimal portfolio weights of crude oil across different assets and market portfolios are evaluated in order to provide important policy implications for risk management in crude oil markets
    corecore