4,528 research outputs found

    Penetration depth study of LaOs4_4Sb12_{12}: Multiband s-wave superconductivity

    Full text link
    We measured the magnetic penetration depth λ(T)\lambda(T) in single crystals of LaOs4_{4}Sb12_{12} (TcT_c=0.74 K) down to 85 mK using a tunnel diode oscillator technique. The observed low-temperature exponential dependence indicates a s-wave gap. Fitting the low temperature data to BCS s-wave expression gives the zero temperature gap value Δ(0)=(1.34±0.07)kBTc\Delta (0)= (1.34 \pm 0.07) k_B T_c which is significantly smaller than the BCS value of 1.76kBTck_B T_c. In addition, the normalized superfluid density ρ(T)\rho(T) shows an unusually long suppression near TcT_c, and are best fit by a two-band s-wave model.Comment: 5 pages, 2 figure

    Probing the superconducting gap symmetry of PrRu4_{4}Sb12_{12}: A comparison with PrOs4_{4}Sb12_{12}

    Full text link
    We report measurements of the magnetic penetration depth λ\lambda in single crystals of PrRu4_{4}Sb12_{12} down to 0.1 K. Both λ\lambda and superfluid density ρs\rho_{s} exhibit an exponential behavior for TT << 0.5TcT_{c}, with parameters Δ\Delta(0)/\textit{k}B_{B}\textit{T}c_{c} = 1.9 and λ(0)\lambda(0) = 2900 \AA. The value of Δ\Delta(0) is consistent with the specific-heat jump value of ΔC/γTc\Delta C/\gamma T_{c} = 1.87 measured elsewhere, while the value of λ(0)\lambda(0) is consistent with the measured value of the electronic heat-capacity coefficient γ\gamma. Our data are consistent with PrRu4_{4}Sb12_{12} being a moderate-coupling, fully-gapped superconductor. We suggest experiments to study how the nature of the superconducting state evolves with increasing Ru substitution for Os

    A Microcantilever-based Gas Flow Sensor for Flow Rate and Direction Detection

    Get PDF
    The purpose of this paper is to apply characteristics of residual stress that causes cantilever beams to bend for manufacturing a micro-structured gas flow sensor. This study uses a silicon wafer deposited silicon nitride layers, reassembled the gas flow sensor with four cantilever beams that perpendicular to each other and manufactured piezoresistive structure on each micro-cantilever by MEMS technologies, respectively. When the cantilever beams are formed after etching the silicon wafer, it bends up a little due to the released residual stress induced in the previous fabrication process. As air flows through the sensor upstream and downstream beam deformation was made, thus the airflow direction can be determined through comparing the resistance variation between different cantilever beams. The flow rate can also be measured by calculating the total resistance variations on the four cantilevers.Comment: Submitted on behalf of EDA Publishing Association (http://irevues.inist.fr/handle/2042/16838

    Extranatural Inflation

    Get PDF
    We present a new model of inflation in which the inflaton is the extra component of a gauge field in a 5d theory compactified on a circle. The chief merit of this model is that the potential comes only from non-local effects so that its flatness is not spoiled by higher dimensional operators or quantum gravity corrections. The model predicts a red spectrum (n ~ 0.96) and a significant production of gravitational waves (r ~ 0.11). We also comment on the relevance of this idea to quintessence.Comment: 4 pages. Minor corrections and references added. Accepted for PR

    Electronic health record-wide association study for atrial fibrillation in a British cohort

    Get PDF
    Background: Atrial fibrillation (AF) confers a major healthcare burden from hospitalisations and AF-related complications, such as stroke and heart failure. We performed an electronic health records-wide association study to identify the most frequent reasons for healthcare utilization, pre and post new-onset AF. Methods: Prospective cohort study with the linked electronic health records of 5.6 million patients in the United Kingdom Clinical Practice Research Datalink (1998–2016). A cohort study with AF patients and their age-and sex matched controls was implemented to compare the top 100 reasons of frequent hospitalisation and primary consultation. Results: Of the 199,433 patients who developed AF, we found the most frequent healthcare interactions to be cardiac, cerebrovascular and peripheral-vascular conditions, both prior to AF diagnosis (41/100 conditions in secondary care, such as cerebral infarction and valve diseases; and 33/100 conditions in primary care), and subsequently (47/100 conditions hospital care and 48 conditions in primary care). There was a high representation of repeated visits for cancer and infection affecting multiple organ systems. We identified 10 novel conditions which have not yet been associated with AF: folic acid deficiency, pancytopenia, idiopathic thrombocytopenic purpura, seborrheic dermatitis, lymphoedema, angioedema, laryngopharyngeal reflux, rib fracture, haemorrhagic gastritis, inflammatory polyneuropathies. Conclusion: Our nationwide data provide knowledge and better understanding of the clinical needs of AF patients suggesting: (i) groups at higher risk of AF, where screening may be more cost-effective, and (ii) potential complications developing following new-onset AF that can be prevented through implementation of comprehensive integrated care management and more personalised, tailored treatment.</p

    Field-angle Dependence of the Zero-Energy Density of States in the Unconventional Heavy-Fermion Superconductor CeCoIn5

    Full text link
    Field-angle dependent specific heat measurement has been done on the heavy-fermion superconductor CeCoIn5 down to ~ 0.29 K, in a magnetic field rotating in the tetragonal c-plane. A clear fourfold angular oscillation is observed in the specific heat with the minima (maxima) occurring along the [100] ([110]) directions. Oscillation persists down to low fields H << Hc2, thus directly proving the existence of gap nodes. The results indicate that the superconducting gap symmetry is most probably of dxy type.Comment: 8 pages, 3 figures, to be published in J. Phys. Condens. Matte

    Tunable magnetic interaction at the atomic scale in oxide heterostructures

    Full text link
    We report on a systematic study of a number of structurally identical but chemically distinct transition metal oxides in order to determine how the material-specific properties such as the composition and the strain affect the properties at the interface of heterostructures. Our study considers a series of structures containing two layers of ferromagnetic SrRuO3, with antiferromagnetic insulating manganites sandwiched in between. The results demonstrate how to control the strength and relative orientation of interfacial ferromagnetism in correlated electron materials by means of valence state variation and substrate-induced strain, respectively

    Novel features in the flux-flow resistivity of the heavy fermion superconductor PrOs4_{4}Sb12_{12}

    Full text link
    We have investigated the electrical resistivity of the heavy fermion superconductor PrOs4_{4}Sb12_{12} in the mixed state. We found unusual double minima in the flux-flow resistivity as a function of magnetic field below the upper critical field for the first time, indicating double peaks in the pinning force density (FPF_{\rm P}). Estimated FPF_{\rm P} at the peak exhibits apparent dependence on applied field direction; composed of two-fold and four-fold symmetries mimicking the reported angular dependence of thermal conductivity (κ\kappa). The result is discussed in correlation with the double step superconducting (SC) transition in the specific heat and the multiple SC-phases inferred from the angular dependence of κ\kappa.Comment: 5 pages, 7 figures, to appear in J. Phys. Soc. Jpn. Vol. 74, No. 6 or

    The Impact of the Laterality on Radiographic Outcomes of the Bernese Periacetabular Osteotomy

    Get PDF
    The purpose of this study was to compare the pre and postoperative radiographic findings and analyze the complication rate with respect to the laterality in periacetabular osteotomy in right-handed surgeons. Satisfaction rate and radiographic findings were prospectively collected between 2017 and 2019 and retrospectively reviewed. For analysis, all measurements of the CT scans were performed by a musculoskeletal fellowship-trained radiologist. Complications were classified into two categories: perioperative or postoperative. All surgeries were performed by three right-hand dominant hip surgeons. A total of 41 dysplastic hips (25 right and 16 left hips) in 33 patients were included. Postoperatively, a significantly lower acetabular index angle on the left side was observed at -2.6 +/- 4.3 as compared to the right side at 1.6 +/- 6.5 (p < 0.05). The change in Center edge (CE) angle was significantly lower for the left side 13.7 +/- 5.5 degrees than on the right side, measured at 18.4 +/- 7.3 (p < 0.001); however, the overall CE angle was comparable at 38.5 +/- 8.9 degrees without any significant difference between the operated hips (left side at 37.8 +/- 6.1 degrees versus right side at 39.0 +/- 10.3; p = 0.340). No significant differences in other radiographic measurements or surgical time were observed. For complications, the right side was more commonly affected, which may also explain a higher satisfaction rate in patients who were operated on the left hip with 92.3%. The change in lateral CE angle was significantly lower for the left side and the right hip seems to be predisposed to complications, which correlate with a lower satisfaction rate in right-handed surgeons

    Doping and temperature dependence of electron spectrum and quasiparticle dispersion in doped bilayer cuprates

    Get PDF
    Within the t-t'-J model, the electron spectrum and quasiparticle dispersion in doped bilayer cuprates in the normal state are discussed by considering the bilayer interaction. It is shown that the bilayer interaction splits the electron spectrum of doped bilayer cuprates into the bonding and antibonding components around the (π,0)(\pi,0) point. The differentiation between the bonding and antibonding components is essential, which leads to two main flat bands around the (π,0)(\pi,0) point below the Fermi energy. In analogy to the doped single layer cuprates, the lowest energy states in doped bilayer cuprates are located at the (π/2,π/2)(\pi/2,\pi/2) point. Our results also show that the striking behavior of the electronic structure in doped bilayer cuprates is intriguingly related to the bilayer interaction together with strong coupling between the electron quasiparticles and collective magnetic excitations.Comment: 9 pages, 4 figures, updated references, added figures and discussions, accepted for publication in Phys. Rev.
    corecore