1,437 research outputs found

    Effects of Glycyrrhizae Radix Pharmacopuncture Intravenous Injection on Ischemia-induced Acute Renal Failure in Rabbits

    Get PDF
    Objectives: The present study was undergone to determine whether Glycyrrhizae Radix pharmacopuncture intravenous injection exerts beneficial effect against the ischemia-induced acute renal failure in rabbits. Methods: Rabbits were treated with Glycyrrhizae Radix pharmacopuncture via i.v., followed by renal ischemia/reperfusion. The fractional excretion of glucose and phosphate were measured and the malondialdehyde content was also determined. The morphological changes of cortical part of kidney also observed with light microscope. Results: Renal ischemia/reperfusion caused increase of the fractional excretion of glucose and phosphate in ischemia-induced animals, which was prevented by Radix Glycyrrhizae extract treatment. Ischemia/reperfusion increased lipid peroxidation, which was prevented and morphological changes also altered by Radix Glycyrrhizae pharmacopuncture administration. Conclusions: These results indicate that lipid peroxidation plays a critical role in ischemia-induced acute renal failure and Glycyrrhizae Radix pharmacopuncture exerts the protective effect against acute renal failure induced by renal ischemia/reperfusion

    In Situ Measurement of the Junction Temperature of Light Emitting Diodes Using a Flexible Micro Temperature Sensor

    Get PDF
    This investigation aimed to fabricate a flexible micro resistive temperature sensor to measure the junction temperature of a light emitting diode (LED). The junction temperature is typically measured using a thermal resistance measurement approach. This approach is limited in that no standard regulates the timing of data capture. This work presents a micro temperature sensor that can measure temperature stably and continuously, and has the advantages of being lightweight and able to monitor junction temperatures in real time. Micro-electro-mechanical-systems (MEMS) technologies are employed to minimize the size of a temperature sensor that is constructed on a stainless steel foil substrate (SS-304 with 30 μm thickness). A flexible micro resistive temperature sensor can be fixed between the LED chip and the frame. The junction temperature of the LED can be measured from the linear relationship between the temperature and the resistance. The sensitivity of the micro temperature sensor is 0.059 ± 0.004 Ω/°C. The temperature of the commercial CREE® EZ1000 chip is 119.97 °C when it is thermally stable, as measured using the micro temperature sensor; however, it was 126.9 °C, when measured by thermal resistance measurement. The micro temperature sensor can be used to replace thermal resistance measurement and performs reliably

    The positive feedback loop between Nrf2 and phosphogluconate dehydrogenase stimulates proliferation and clonogenicity of human hepatoma cells

    Get PDF
    © 2020, © 2020 Informa UK Limited, trading as Taylor & Francis Group.Recent studies report that nuclear factor-erythroid-2-related factor 2 (Nrf2) facilitates tumor progression through metabolic reprogramming in cancer cells. However, the molecular mechanism underlying the oncogenic functions of Nrf2 is not yet well understood. Some of the pentose phosphate pathway (PPP) enzymes are considered to play a role in the cancer progression. The present study was intended to explore the potential role of phosphogluconate dehydrogenase (PGD), one of the PPP enzymes, in the proliferation and migration of human hepatoma HepG2 cells. Genetic ablation of Nrf2 attenuated the expression of PGD at both transcriptional and translational levels. Notably, Nrf2 regulates the transcription of PGD through direct binding to the antioxidant response element in its promoter region. Nrf2 overexpression in HepG2 cells led to increased proliferation, survival, and migration, and these events were suppressed by silencing PGD. Interestingly, knockdown of the gene encoding this enzyme not only attenuated the proliferation and clonogenicity of HepG2 cells but also downregulated the expression of Nrf2. Thus, there seems to exist a positive feedback loop between Nrf2 and PGD which is exploited by hepatoma cells for their proliferation and survival. Treatment of HepG2 cells with ribulose-5-phosphate, a catalytic product of PGD, gave rise to a concentration-dependent upregulation of Nrf2. Collectively, the current study shows that Nrf2 promotes hepatoma cell growth and progression, partly through induction of PGD transcription.

    A Nanopore Structured High Performance Toluene Gas Sensor Made by Nanoimprinting Method

    Get PDF
    Toluene gas was successfully measured at room temperature using a device microfabricated by a nanoimprinting method. A highly uniform nanoporous thin film was produced with a dense array of titania (TiO2) pores with a diameter of 70∼80 nm using this method. This thin film had a Pd/TiO2 nanoporous/SiO2/Si MIS layered structure with Pd-TiO2 as the catalytic sensing layer. The nanoimprinting method was useful in expanding the TiO2 surface area by about 30%, as confirmed using AFM and SEM imaging. The measured toluene concentrations ranged from 50 ppm to 200 ppm. The toluene was easily detected by changing the Pd/TiO2 interface work function, resulting in a change in the I–V characteristics

    Anti-inflammatory effect of supercritical extract and its constituents from Ishige okamurae

    Get PDF
    The anti-inflammatory properties of the supercritical fluid extract of Ishige okamurae (SFEIO) on lipopolysaccharide (LPS)-stimulated murine RAW 264.7 macrophages. The lipid profile of the SFEIO, reviled the presence of palmitic acid (220.2 mg/g), linoleic acid (168.0 mg/g), and oleic acid (123.0 mg/g). SFEIO was found to exert it’s anti-inflammatory effects through inhibiting nitric oxide (NO), prostaglandin E2 (PGE2), inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 production in LPS-stimulated RAW 264.7 cells, without inducing cytotoxicity. SFEIO did not effect on the LPS-induced p38 kinase phosphorylation, whereas it attenuated the extracellular-related signaling kinase (ERK) and c-Jun N-terminal kinase (JNK) phosphorylation. Furthermore, SFEIO inhibited the LPS-induced IκB-α degradation and p50 NF-κB activation. These results suggest that SFEIO exerts its anti-inflammatory effects in LPS-activated RAW 264.7 cells by down-regulating the activation of ERK, JNK, and NF-κB

    A study of the relationship between clinical phenotypes and plasma iduronate-2-sulfatase enzyme activities in Hunter syndrome patients

    Get PDF
    PurposeMucopolysaccharidosis type II (MPS II or Hunter syndrome) is a rare lysosomal storage disorder caused by iduronate-2-sulfatase (IDS) deficiency. MPS II causes a wide phenotypic spectrum of symptoms ranging from mild to severe. IDS activity, which is measured in leukocyte pellets or fibroblasts, was reported to be related to clinical phenotype by Sukegawa-Hayasaka et al. Measurement of residual plasma IDS activity using a fluorometric assay is simpler than conventional measurements using skin fibroblasts or peripheral blood mononuclear cells. This is the first study to describe the relationship between plasma IDS activity and clinical phenotype of MPS II.MethodsWe hypothesized that residual plasma IDS activity is related to clinical phenotype. We classified 43 Hunter syndrome patients as having attenuated or severe disease types based on clinical characteristics, especially intellectual and cognitive status. There were 27 patients with the severe type and 16 with the attenuated type. Plasma IDS activity was measured by a fluorometric enzyme assay using 4-methylumbelliferyl-α-iduronate 2-sulphate.ResultsPlasma IDS activity in patients with the severe type was significantly lower than that in patients with the attenuated type (P=0.006). The optimal cut-off value of plasma IDS activity for distinguishing the severe type from the attenuated type was 0.63 nmol·4 hr-1·mL-1. This value had 88.2% sensitivity, 65.4% specificity, and an area under receiver-operator characteristics (ROC) curve of 0.768 (ROC curve analysis; P=0.003).ConclusionThese results show that the mild phenotype may be related to residual lysosomal enzyme activity

    Reoperations after fusion surgeries for degenerative spinal diseases depending on cervical and lumbar regions: a national database study

    Get PDF
    Background Reoperation is one of the key factors affecting postoperative clinical outcomes. The reoperation rates of cervical surgeries might be different from those of lumbar surgeries due to the anatomical and biomechanical differences. However, there has been no study to compare the reoperation rate between them. The purpose is to compare reoperation rates after fusion surgeries for degenerative spinal diseases depending on the anatomic region of cervical and lumbar spines. Method We used the Korean Health Insurance Review & Assessment Service national database. Subjects were included if they had any of the primary procedures of fusion combined with the procedure of decompression procedures under the diagnosis of degenerative diseases (n = 42,060). We assigned the patients into two groups based on anatomical regions: cervical and lumbar fusion group (n = 11,784 vs 30,276). The primary endpoint of reoperation was the repeat of any aforementioned fusion procedures. Age, gender, presence of diabetes, associated comorbidities, and hospital types were considered potential confounding factors. Results The reoperation rate was higher in the patients who underwent lumbar fusion surgery than in the patients who underwent cervical fusion surgery during the entire follow up period (p = 0.0275). A similar pattern was found during the late period (p = 0.0468). However, in the early period, there was no difference in reoperation rates between the two groups. Associated comorbidities and hospital type were noted to be risk factors for reoperation. Conclusions The incidence of reoperation was higher in the patients who underwent lumbar fusion surgery than those who underwent cervical fusion surgery for degenerative spinal diseases.This research was supported by the Hallym University Research Fund 2017(HURF-2017–06)

    Sinus Histiocytosis with Massive Lymphadenopathy: A Case Report with Pleural Effusion and Cervical Lymphadenopathy

    Get PDF
    Sinus histiocytosis with massive lymphadenopathy (SHML) is a rare disorder characterized by a nonneoplastic proliferation of distinctive histiocyte cells within lymph node sinuses and lymphatics in extranodal sites. SHML occurs worldwide and is primarily a disease of childhood and early adulthood. A 26-yr-old man presented with painless palpable lymph node in cervical area. Radiographic studies revealed pleural effusion with lymphadenopathy and calcification in mediastinum. The cervical lymph node biopsy showed dilated sinuses filled with histiocytes with clear cytoplasm. The cells stained positive with CD68 and S-100. These cytologic and immunohistochemical findings were considered consistent with the diagnosis of SHML
    corecore