330 research outputs found

    Diffusion Dynamics, Moments, and Distribution of First Passage Time on the Protein-Folding Energy Landscape, with Applications to Single Molecules

    Full text link
    We study the dynamics of protein folding via statistical energy-landscape theory. In particular, we concentrate on the local-connectivity case with the folding progress described by the fraction of native conformations. We obtain information for the first passage-time (FPT) distribution and its moments. The results show a dynamic transition temperature below which the FPT distribution develops a power-law tail, a signature of the intermittency phenomena of the folding dynamics. We also discuss the possible application of the results to single-molecule dynamics experiments

    Identifying Large-Scale RFID Tags Using Non-Cryptographic Approach

    Get PDF
    In this paper, we propose a new approach to identify a tag of a RFID system in constant time while keeping untraceability to the tag. Our scheme does not use any cryptographic primitives. Instead, we use a line in a plane to represent a tag. The points on the line, which are infinite and different each other, can be used as tag identification. We also explore the scalability of the proposed scheme. The result of experiments showed that a tag of the RFID system over 1,000,000 tags, embedded 3000 gates, can store 559 dynamic identity proofs

    A Novel RFID Authentication Protocol based on Elliptic Curve Cryptosystem

    Get PDF
    Recently, many researchers have proposed RFID authentication protocols. These protocols are mainly consists of two types: symmetric key based and asymmetric key based. The symmetric key based systems usually have some weaknesses such as suffering brute force, de-synchronization, impersonation, and tracing attacks. In addition, the asymmetric key based systems usually suffer from impersonation, man-in-the-middle, physical, and tracing attacks. To get rid of those weaknesses and reduce the system workload, we adopt elliptic curve cryptosystem (ECC) to construct an asymmetric key based RFID authentication system. Our scheme needs only two passes and can resist various kinds of attacks. It not only outperforms the other RFID schemes having the same security level but also is the most efficient

    Knowledge-Enriched Visual Storytelling

    Full text link
    Stories are diverse and highly personalized, resulting in a large possible output space for story generation. Existing end-to-end approaches produce monotonous stories because they are limited to the vocabulary and knowledge in a single training dataset. This paper introduces KG-Story, a three-stage framework that allows the story generation model to take advantage of external Knowledge Graphs to produce interesting stories. KG-Story distills a set of representative words from the input prompts, enriches the word set by using external knowledge graphs, and finally generates stories based on the enriched word set. This distill-enrich-generate framework allows the use of external resources not only for the enrichment phase, but also for the distillation and generation phases. In this paper, we show the superiority of KG-Story for visual storytelling, where the input prompt is a sequence of five photos and the output is a short story. Per the human ranking evaluation, stories generated by KG-Story are on average ranked better than that of the state-of-the-art systems. Our code and output stories are available at https://github.com/zychen423/KE-VIST.Comment: AAAI 202

    Graphene on Au-coated SiOx substrate: Its core-level photoelectron micro-spectroscopy study

    Full text link
    The core-level electronic structures of the exfoliated graphene sheets on a Au-coated SiOx substrate have been studied by synchrotron radiation photoelectron spectroscopy (SR-PES) on a micron-scale. The graphene was firstly demonstrated its visibility on the Au-coated SiOx substrate by micro-optical characterization, and then conducted into SR-PES study. Because of the elimination of charging effect, precise C 1s core-level characterization clearly shows graphitic and contaminated carbon states of graphene. Different levels of Au-coating-induced p-type doping on single- and double-layer graphene sheets were also examined in the C 1s core-level shift. The Au-coated SiOx substrate can be treated as a simple but high-throughput platform for in situ studying graphene under further hybridization by PES
    • …
    corecore