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Abstract 
In this paper, we propose a new approach to identify a tag of a RFID system in 
constant time while keeping untraceability to the tag. Our scheme does not use any 
cryptographic primitives. Instead, we use a line in a plane to represent a tag. The 
points on the line, which are infinite and different each other, can be used as tag 
identification. We also explore the scalability of the proposed scheme. The result of 
experiments showed that a tag of the RFID system over 1,000,000 tags, embedded 
3000 gates, can store 559 dynamic identity proofs. 

Keywords: radio frequency identification, RFID, identification protocol, privacy, 
untraceability, location privacy, scalability 

1. Introduction 

The Radio Frequency Identification (RFID) technique allows identifying hundreds of 
objects one time via a contactless manner. It therefore becomes an important role in 
many applications such as automobile immobilization, RTLS (Real Time Location 
Systems), baggage handling, animal tracing, and item-level tagging in fashion 
apparels. However, the RFID technique brings not only new opportunities but also 
new challenges. In particular, secure and private RFID tag identification protocol is a 
demanding task since the resource of RFID tags is extremely limited. There are three 
roles in a typical RFID system: tags which are embedded in objects to be identified, 
readers which emit radio signals to interrogate tags, and a server which maintains all 
tags' information, identifies tags and provides services. In this paper, we focus on 
three features of the RFID identification protocols.  
  First, as being a low-cost device, a passive RFID tag is not powered and 
accommodates only a few hundreds to thousands gates. Traditional cryptographic 
primitives are thus hardly applied on such cheap tags [1, 2]. In addition, as tags are 
usually embedded in objects carried by people everywhere, the user location privacy 
is an essential requirement [1-5]. A common countermeasure is a tag answers a server 
with a dynamic identity (DID). The server then solves the DID and extract the real tag 
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identity. Meanwhile, a third party cannot link the DID to any particular tag and thus 
cannot locate the user who carries the tag. Researchers also refer this property as 
untraceability or unlinkability. Third, since many RFID applications require 
deploying the tags in large scale, the scalability is also an important feature. If a 
server takes linear time to identify a tag, the identification time for the server will 
increase as the number of tags increase. This will limit the scalability of a RFID 
system. Conversely, if a server takes constant time to identify a tag, the number of 
tags will not be limited. Therefore, RFID scalability can be realized as constant-time 
tag identification.  
  In recent decades, many secure and private RFID authentication protocol are 
proposed. Weies et al. [1] proposed a hash-based method to reserves user location 
privacy. Their scheme uses a random number r and tag's secret key k to make a DID, 
i.e. h(k, r), where h(.) is a one-way hash function. However, the server has to linearly 
search its database (DB) to compare whether each h(ki, r) is equal to the received h(k, 
r). This limits the scalability. Recent work [6] is a similar approach and suffers the 
same problem.  
  Ohkubo, Suzuki and Kinoshita (OSK) [2] proposed another hashed-based method 
to further assure forward secrecy: even if tag's secrecy is exposed, the past 
transactions that the tag was involved cannot be linked to the tag. In their scheme, a 
tag and server share secrecy s0 when initialized. After deployment, on receiving the 
ith query, the tag responds with h(si), where si = g(si-1) and g(.) is another one-way 
hash function. On seeing h(si), the server reads its DB record by record. Suppose it is 
reading the jth record and sj* is the corresponding seed. The server will compare 
whether the received h(si) is equal to h(g1(sj*)), h(g2(sj*)), ..., or h(gm(sj*)), where gm(.) 
indicates performing function g(.) m times. Consequently, the server has to take O(mN) 
time for each tag identification, where N refers to number of tags. 
  Studies [7, 8] arrange tags in a tree structure on secret keys they possess to reduce 
the identification complexity to O(logN). However scheme [7] will be broken since 
compromising 20 tags in a system of N=220 tags reveals the identities of other tags. 
The improved scheme [8] requires updating overhead in O(logN) in order to remedy 
the problem in [7]. Another major weakness is that the tree-based approach leads high 
communication overhead between tag and reader. Some researchers believe these 
drawbacks overweigh the reduction in identification complexity [13]. 
  RAP series [9-12] use monotonically increasing time as the randomness of a 
hash-based DID. In an identification process for a group of tags, a server first 
computes each expected DID by using a new challenge time and then integrates tags 
using the challenge. On receiving an expected DID, the server can directly address the 
corresponding tag. This design assures untraceability and resists replay attack. It can 
achieve O(1) time to identify a tag for best case but still O(N) times for worst cases. In 
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the worst case, a tag, suffered malicious queries before, will not answer the expected 
response and the server will therefore launch brute searching for the tag identification. 
  Alomair et al. [13, 14] uses two layers pointers to save pre-built DIDs − h(Ψi, c)s, 
where Ψi is a pseudonym and c is counter ranging form zero to C − to allows 
malicious queries to a specific tag at least C times. The size of the first-layer table is 
estimated as O(NC) and each record point to a second-layer table. The each 
second-layer table which points to a tag information is expected to contain only one 
record. As a result, it assure constant-time identification when server seeing h(Ψi, c). 
After recognizing Ψi, the server assigns an unoccupied pseudonym Ψk to the tag, 
where h(Ψk, 0), h(Ψk, 1), ..., and h(Ψk, C) in the second-layer tables point to an empty 
tag record, position p. Finally, the server updates its tables by moving the tag 
information record to the new position p and emptying the original tag record, say 
position p', as null. By this way it assures O(1) update. 
  Ryu and Takagi (RT) [15] stores one-time values ∆={α1, ..., αm} as DIDs on a tag 
where αi = Epk(TagID||r), Epk(.) is a public key encryption and the corresponding 
private key only known to the server. For each interrogation, the tag responds with a 
fresh one-time pad and a reader is allowed to write new one-time values in the tag 
after successfully mutual authentication. As the server can obtain tag identity by 
decrypting a received αi, RT achieves constant-time identification and thus assures 
scalability. However, for about 60-bit security level, the size of αi is about 512 bits in 
RSA encryption or 400 bits in ElGamal elliptic-curve encryption (ECC). Then, 
suppose a tag with 3K bytes memory. It can store only 48 RSA-based or 61 
ECC-based ciphertexts. This implies the tolerance for malicious query to a tag is only 
48 or 61 times.  
  Studies [16-18] use ECC-based approach while studies [19, 20] use Rabin's 
cryptosystem, which are public-key based approaches. Public key cryptosystems 
easily obtain constant-time tag identification but they pay hardware cost at tag side. 
The most efficient ECC component costs 12.5K gates [21] while 512-bit Rabin's 
encryption costs about 17K gates [22] or 10K gates [23]. These obviously greatly 
exceed the cost of hash-like component AES, about 3.4K gates [24].  

In this paper, we propose a new approach which is extremely low cost on tags 
while assuring constant-time tag identification and keeping tag untraceability. Our 
scheme uses the points of a line on a plan as one-time pseudonyms for a tag whose 
identity is the slope of the line. In an initialization phase, a server transforms m points 
of a line into a smaller space and then assigns the transformed data (playing a role like 
DID) to a tag. In an identification phase, a tag answers a fresh DID; the server then 
reverses the DID into a point in order to compute the original line and therefore 
identifies the tag in constant time. Table 1 lists resource usage of the proposed scheme 
and previous related works. 
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The remaining of this paper is organized as follows. Section 2 describes the basic 
idea of the proposed scheme while Section 3 presents the detailed implementation. 
Performance evaluation and security analyses of the proposed scheme are shown in 
Section 4 and 5 respectively. Finally, Section 6 gives conclusion and future work. 
 

Table 1: Resource usage of the proposed scheme and previous related works 

Schemes DB size Identifi- 
Cation 

DB 
Update 

Tag 
Space 

Communi- 
cation 

Note 

Weis [1, 6] O(N) O(N) none O(1) O(1)  
OSK [2] O(N) O(mN) O(1) O(1) O(1)  
Tree-based [7, 8] O(N) O(lgN) O(lgN) O(1) O(lgN)  

RAP series [9-12] O(N) O(1) or 
O(N) O(1) O(1) O(1)  

Alomair [13, 14]  O(NC) O(1) O(1) O(1) O(1)  

RT [15] O(N) O(1) none O(m) O(1) m is limited about 
40-60 

PKC-based [16-20] O(N) O(1) none O(1) O(1) Tag costs more gates 

Ours  O(N) O(1) none O(m) O(1) m is limited about 
400-500 

 

2. Basic Idea 

In this work, we would like to use the slope of a line on a plane to represent a tag. The 
tag then can be identified if it can provide correct information regarding the line. 
Figure 1 shows the basic idea of our scheme. In the figure, a randomly chosen point (a, 
b) is the secrecy of the server. For simplification and without loss of generality, we let 
a = b = 0. A line Li having slope si and passing through (a, b) represents tag Ti. Any 
point (x, y) on the line Li can be a proof of Ti. In addition, we assume that the length 
of a or b is k-bit long, denoted as |a| = |b| = k. Then, the slopes of lines representing all 
tags of a RFID system are defined as the set S = {s| s is an integer, −(2k-1−1)  s   
+(2k-1−1), and s ≠ 0}. Hence, the number of tags in our system is N = 2k − 2. The 
following algorithm demonstrates the tag initialization of this basic scheme. 
 

Basic Tag Initialization { 

S = [-(2k-1-1), +(2k-1-1)] - {0}; 

N = |S|; i = 1;           

For s = -2k-1+1 to 2k-1-1  {    //s presents the slope of a line 

  // setup tag Ti; 

    for j = 1 to m {   // generate m pairs of (x, y)  

       xj R [-(2k-1-1), +(2k-1-1)] - {a};   
       yj = s * xj + (b - a * s);         

    }   

    Write m tuples, (x1, y1), ..., (xm, ym), into Ti's storage; 
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    Insert {s, TagInfo, x1, x2, ..., xm} into server's database; 

    Next i; 

  } 

} 

Tag1 Tag2

Tagi

(a ,
b )

(x 2, y 2)
．

(line: Li with
slop:s )

Tagi's
(x 1,y 1), (x 2,y 2)...

Server's DB
s TagInfo

．
(x 1, y 1)

 

Fig. 1. Basic model of the study 

 
When the tag initialization completed, each tag storage has m tuples of proofs, (x1, y1), 
(x2, y2), ..., and (xm, ym). In the identification phase, on receiving an interrogation from 
a server, a tag will answer an unused (xj, yj) pair. On receiving the pair, the server will 
compute s = (xj − a)/(yj − b) and then use s to look up the corresponding tag in its DB.  

We take k = 8 as an example. Then according to our design, S is a set of all 
integers in [−127, 127] − {0} and each element in S represents an identity of a tag. 
Moreover, we let a random pair (a, b) = (−23, −94) be the secret point of the server. 
Then, we have y = −127x + 2827 to represent a tag which identity is −127 and points 
(−27, 414), (99, −1558) and (−52, 3589) are the proofs of the tag. When the tag 
provides any one of these proofs, say (−27, 414), the server can compute the 
expression s = (414 − (−94))/ (−27 − (−23)) = −127 and thus obtain the identity of the 
tag. 
  Our approach has several merits: First, it assures constant-time tag lookup at 
server side since a server can compute the slope of a tag and then directly fetch the tag 
record. Furthermore, the constant-time tag identification implies scalability of a RFID 
system compared to O(N)-time tag identification of many hash-based schemes [1, 2, 6, 
9-12] (also see Table 1). The second merit of our approach is that it requires only O(N) 
space to store tag information at server side. Thirdly, any two observed proofs, which 
may come from one tag or from two different tags, are indistinguishable. This assures 
untraceability and location privacy. Finally, the tag need not embed any 
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cryptographic component such as PRNG, Hash or AES. Moreover, when being 
identified, the tag as long as selects an unused proof as its answer. This takes 
extremely low computational overhead.  
  However, some details should be further considered. First, the plaintext of point (x, 
y) is not suitable for transmission over an open network since any two eavesdropped 
pairs (x1, y1) and (x2, y2) from a tag can deduce the slope of the tag. Therefore, (x, y) 
pair should be transmitted in an encrypted form. Our countermeasure is that the server 
transforms a (x, y) into a random-looking string in the initialization phase. Thus, the 
random-looking result will play as a one-time pad and hence achieve unconditional 
security. That is, even an adversary intends to exhaustively guess the server's secret 
point (a, b), he does not has any clue − the plain (x, y)s or slopes − to examine his 
guess. Second, the tag's memory size will be a limitation. As x and s both are k-bit 
long integers, the value of the y will be about 2k-bit long. If a tag stores such a (x, y) 
pair in a plain manner, it would take 3k bits. For example, supposing k is 20 bits, the 
tag would take 60 bits of storage to store a (x, y) pair. Thus, a tag having 2K-byte 
storage can store about 273 pairs of (x, y). We consider that if the storage size of the y 
can be reduced to 20 bits as same as the storage size of x, the tag then can store over 
400 pairs of (x, y). Therefore, the problem of this study can be further formulated as 
how to downsize the storage of the y values. 

3. The Proposed Scheme 

In this section, we present a practical implementation based on our basic model. In the 
implementation, we first consider how to store the y values in tags; i.e. how to encode 
the y value to attain better space efficiency.  
  We start the discussion from the range of y values. The maximum of all possible y 
for any (a, b), denoted as YMAX, is 
 YMAX = 2(2k-1−1)2 − 3*2k-1 + 122k-1  

when (s, a, b, x) = (2k-1−1,−(2k-1−1),2k-1−1,2k-1−1) or (−(2k-1−1),2k-1−1,2k-1−1,−(2k-1−1)).  
And y will reach the minimum, denoted as YMIN, 
 YMIN = −2(2k-1−1)2 + 3*2k-1 − 1−22k-1 

when (s, a, b, x)=(−(2k-1−1),−(2k-1−1),−(2k-1−1),2k-1−1)or (2k-1−1,2k-1−1,−(2k-1−1),−(2k-1−1)). 
  Take k as 4 bits for example. The range of x will fall in [−7, 7] while the range of y 
will fall in [−105, 105]. YMAX is 105 when (s, a, b, x) = (7, −7, 7, 7) or (−7, 7, 7, −7) 
while YMIN is −105 when (s, a, b, x) = (−7, −7, −7, 7) or (7, 7, −7, −7). Thus, storing 
y value requires about 8 bits while storing x value requires only 4 bits.  
  However, according to our observation, the distribution of y is not uniform; it is 
sparser when y is toward extreme values in the space [YMAX, YMIN]. Figure 2 
supports this observation. It illustrates three distributions of (x, y) pairs, each 
systematically sampling 4,963 pairs from 64,516 pairs, with parameters k = |x| = 8 bits 
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and random point (a, b) is equal to (−68, 79), (−127, −127) and (127, 127), 
respectively.  

 
Fig. 2. Distributions of (x, y) pairs of (a, b) = (-68, 79), (-127, -127) and (127, 127) 

 
  From Figure 2, we believe that y value can be compressed through some 
transformation algorithms and mapped to a smaller space. Our intuitive solution has 
two phases. Briefly, the first phase − fuzzification − transforms set Y (i.e. the range of 
y) to Y' and the second phase − randomization − further transforms Y' to Y". Detailed 
transformations are given in the following.  
  First, it fuzzifies y value to reduce the order (cardinality) of Y. A value y(1) in Y can 
be fuzzified as y(2) if  

(1) y(2) is an element of Y,  
(2) y(2) is proximate to y(1), and  
(3) the slope of the line passing through the fuzzified point (whose y-axis is y(2)) 

should fall between s + 0.5 and s − 0.5, where s is the original slope of the 
line passing the original point (whose y-axis is y(1)).  

 Second, it uses a table to map each y' in Y' to a distinct random number y", i.e. MAP: 
{0, 1}k{0, 1}k", yielding Y". 
 
  The following algorithm presents our implementations. After the server randomly 
chooses a point (a, b) in the setup phase, Tag Initialize Algorithm sets up all tags in 
the system. 
 

 Tag Initialization Algorithm (a, b) {   

S = [-(2k-1-1), (2k-1-1)] - {0}; 

N = |S|; 

s = -2k-1+1;               //s presents the slope of a line 

for i = 1 to N 
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  // Arbitrarily select unset tag Ti; 

    for j = 1 to m {   // produce m pairs of (x, y) 

       xj R S {0}-{a};  
       yj = s * xj + (b - a * s); 

       y"j = Transformation(yj); 

    } 

    Write m tuples (x1, y"1), ..., (xm, y"m) into Ti's storage; 

    Insert {s, TagInfo, x1, x2, ..., xm} into database; 

    Next s;     

} 

Transformation(y) 

{ 

    List ylist;  //each element in ylist has yVal, count, randNo  

             //initialized with empty;  

Search y's proximate value y* in the ylist; 

If found  { 

       slope* = (y* - b)/ (x - a); 

       If | slope*- slope| < 0.5   { 

         y*.count++; 

         Return y*.randomNo; 

       } 

    } 

    New y*; 

    y*.yVal = y; 

    y*.count = 1; 

    y*.randomNo  {0, 1}k"; 

    Insert y* into the ylist 

    Return y*.randomNo; 

}  

 
In the identification phase, the server/reader interrogates tags. On receiving (x, y") 
from a tag, the server will perform Tag Identification Algorithm as the following. 
 

Tag Identification Algorithm (x, y")  

{ 

   y*  Search ylist using y". 

slope* = (y*- b)/ (x- a); 

slope = FnindProximateInteger(slope*); 
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Read tag record using slope; 

If not found return "Invalid Data"; 

If x is not fresh return "Replay"; 

Else return "Accept"; 

    } 

FnindProximateInteger(s) 

{ 

   If (s¡ Floor(s) < 0.5)  

Return Floor(s); 

       Else  

Return Ceiling(s); 

    } 

Example. Take k=8 as an example and suppose (a, b) = (−23, −94). The Tag 
Initialization Algorithm starts from s = −127 to s = −127. When s = −127, it sets up 
tag T1 and assigns its identity as −127, i.e. T1: y = −127x + 2827. The algorithm 
continues generating the first x value randomly, say 49, and computes the 
corresponding y = −9238. Then it transforms the value y. As the ylist is empty now, 
the algorithm inserts y = −9238 into the ylist and returns a random string, say 1102. 
Thus the first proof (49, 1102) for T1 is generated. The algorithm continues generating 
the second random x, say 36, and computes corresponding y = 1557. Similarly, to 
transform the value y, the algorithm finds the adjacent integer in the ylist, say −9238, 
and checks whether the slope s* of a line, passing through (a, b) and (36, −9238), falls 
between (−127−0.5, −127+0.5). Since it does not, the algorithm inserts the new y = 
1157 into the ylist and returns a random string, say 25. Again, the second proof (36, 
25) for T1 is generated. The algorithm goes on such steps m times and finally produces 
m proofs for tag T1. Now, suppose that the algorithm comes to s = −35 and it sets up 
T93: y = −35x − 899. The first random x = −70 and corresponding y = 1551. In 
transformation, the algorithm finds an adjacent 1557 in the ylist and computes the 
slope s* of a line passing through (a, b) and (−70, 1557) is equal to 
(1557−(−94))/(−70−(−23)) = −35.13, falling in (−35−0.5, −35+0.5). It then uses 1557 
instead of 1551. So, the proof of the line (s = −35) becomes (−70, 25), where the 
value 25 is the corresponding random number of the value 1577 in the ylist.  
 
Complexity of Tag Initialization Algorithm. In the algorithm, there are N tags to be 
initialized; for each tag, the algorithm produces m pairs of (x, y); and for each y value, 
the algorithm searches the proximate value of y in the ylist using binary search. Here, 
we let the number of elements in the ylist be NoList. It is clearly that the NoList 
increases gradually while more (x, y) pairs being generated. Figure 3 explores the 
average variation of the NoList under varying m and k=8. Therefore, the complexity 
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of Tag Initialization Algorithm can be estimated as  

mN

i iNoList*

1
)log( .  

 
Fig. 3. The average variation of the NoList 

 
We let |Y"| be the maximum of NoList. The complexity of Tag Initialization 
Algorithm will be bounded by N*m*log(|Y"|) = N*m*log(2k") = N*m*k". Accordingly, 
it is sufficient that k" is set to 11 for k=8, also refer Figure 3.  
 
Complexity of Tag Identification Algorithm. For each tag identification, the server 
searches y" in the ylist in order to map y" to y and then computes slope s to identify 
the tag. It takes log(|Y"|) = k" times in average, a const-time identification. 
 
4. Performance Evaluations 
In this section, we use the results of experiments to evaluate the performance of the 
proposed scheme. The first experiment examines the compression effect of the 
proposed transformation algorithm on the y value. It adopts k=8 and chooses secret 
point (a, b) as (−23, −94). Then, it computes all (x, y, y', y") quartets, where (x, y) is 
the original point, y' is equal to y or the qualified adjacency of the y, and y" is the final 
result, a one-time random number. Figure 4 demonstrates part of raw data. For the 
rightmost column in Figure 4, it shows the slope, s*, which is computed by using (x, 
y') and should be in the range of s plus or minus 0.5. To see the compression effect on 
y, Figure 5 shows the distributions of (a): (x, y), (b): (x, y") and (c): (x, y") in smaller 
scale, respectively, when (a, b) = (−23, −94). Fig. 6 shows the same cases when (a, b) 
= (127, −127). 
  From Figure 5 and Figure 6, we can see the original y ranging in [−215, 215] can be 
compressed into the space of [0, 211] and the result displays a more uniform 
distribution. 
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s  
(tag identity) x y y' y" Note: s* 

-127  -127 13114 13114 1636 -127 

-127  49 -9238 -9238 1102 -127 

-127  36 1557 1557 25 -127 

-35  -70 1551 1557 25 -35.13 

-35  81 -3734 -3719 605 -34.86 

1  116 45 46 1463 1.49 

1  -9 -80 -80 491 1 

51  16 1895 1906 1858 51.28 

51  66 4445 4478 91 51.37 

125  45 8406 8415 100 125.13 

125  -106 -10469 -10508 749 125.47 

Fig. 4. Part of raw data for (a, b) = (-23, -94) in experiment 1 

 

Fig. 5. The compression effect on y for (a, b) = (-23, -94) in experiment 1 

 
Fig. 6. The compression effect on y for (a, b) = (127, -127) in experiment 1  
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  The second experiment explores scalability and corresponding parameter selections. 
The goal of this experiment is to estimate the size of k" when k 16. As we know, k" 
can be estimated by the order of Y". In the experiment, it randomly chooses (a, b), set 
m as 250 (or 500), then executes Tag Initialization Algorithm five times, and finally 
computes the average number of elements in Y", denoted as |Y"|average. Table 2 shows 
the results. 

Table 2. The estimation of the size of k¡   

k N m |Y"|average k" 

16 65,534 250 470,365 ( 219) 19 

  500 498,700 ( 219) 19 

20 1,048,576 250 6,180,011 ( 223) 23 

  500 10,077,000 ( 224) 24 

22 4,194,310 250 47,100,995 ( 226) 26 

  500 108,205,904 ( 227) 27 

 
 According to Table 2, we can estimate how many (x, y") pairs a tag can 
accommodate under different system scale and different tag storage. Table 3 shows 
the results. 

Table 2. Parameter selection for different system scale 

k        N k" Tag 
Storage m 

16 65,534 19 1K 234 

   2K 468 

   3K 702 

20 1,048,574 24 1K 186 

   2K 372 

   3K 559 

22 4,194,302 27 1K 167 

   2K 334 

   3K 502 

5. Security Analysis 

We analyze the security of the proposed scheme in the following. 

Privacy preservation. As shown in the proposed scheme, the proofs, (x, y") pairs, of 
a tag are different for each identification. These proofs play as one-time pads. 
Moreover, (x, y") can be treated as a random string since x is uniformly random while 
y" is a random string generated by the server. Thus any two pairs (x1, y"1) and (x2, y"2) 
responded by a tag or by two different tags do not have any relationship. Accordingly, 



 13 

the user location cannot be tracked when he bears something embedded with such a 
tag.    

Against tag identity guessing. It is a very interesting property of our scheme that an 
adversary cannot guess the identity of a tag since he does not have any extra 
information about the real y from an eavesdropped y". Again, any two eavesdropped 
pairs (x1, y"1) and (x2, y"2) from a tag are just two random string and thus cannot 
deduce the identity of the tag.  

Against valid (x, y") guessing. An adversary might select an arbitrary sS and 
consider that it must be the identity of a tag in the system. However, without server's 
secrecy (a, b) he cannot determine the line for the tag. Even if he knows (a, b) and 
thus can computes (x, y), the adversary cannot map y to y" since the mapping table is 
preserved by the server. If the adversary uses random guessing, the successful 
probability of his randomly guessed (x, y") which can be accepted by the server is 
bounded by 2-(k+k"). 

Against (a, b) guessing. Any two lines representing two different tags can compute 
the interaction point, i.e. the point (a, b). However, without any clear y value, an 
adversary cannot determine any line. It is interesting that even when an adversary 
wants to exhaustively guess server's (a, b), he cannot succeed since none of clear (x, y) 
can be provided for examining his guessing. We refer to this security notion as 
unconditionally secure.  

6. Conclusion and future work 

To our best knowledge, our scheme is the first attempt that uses a line on a plane to 
represent a RFID tag. It assures constant-time tag identification and thus possesses the 
scalability. Moreover, the random-looking response of a tag is changeable for each 
identification guards the user location privacy. This paper is just the beginning. Our 
future work are three aspects. The first is to find another better compression approach 
for y value to further downsize the space of storing y.  

Secondly, the proposed scheme also requires a mechanism of updating (x, y") pairs 
in a tag. In our system described in Sec. 3, there will be no fresh (x, y") for a tag to 
respond server/reader's interrogations when m pairs of (x, y") are used. This will 
restrict the proposed scheme applied on many applications. A possible solution is that 
the server reallocates m fresh pairs to the tag via a secure channel.  

The third of the future work is to improve the proposed scheme to resist 
denial-of-service (DoS) attacks. When suffered intensive malicious interrogations 
(over m times), a tag in our system will be unavailable anymore. Alomair's solution is 
to use a counter in a tag, which allows the tag producing many dynamic identities. In 
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addition, the server in Alomair's scheme must store all possible dynamic identities. 
The solution of RAP series is to launch brute search when the tag had suffered attacks. 
Although these solutions are not satisfactory, our future work may start from these 
works.   
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