
 1

Identifying Large-Scale RFID Tags Using Non-Cryptographic
Approach

Yalin Chen 1, Jue-Sam Chou 2, Cheng-Lun Wu 3, Chi-Fong Lin 4
1 Institute of information systems and applications, National Tsing Hua University, Taiwan

yalin78900@gmail.com
2, 3, 4 Department of Information Management, Nanhua University, Taiwan

jschou@mail.nhu.edu.tw, wfdawu@gmail.com, chejtmmc@gmail.com

Abstract
In this paper, we propose a new approach to identify a tag of a RFID system in
constant time while keeping untraceability to the tag. Our scheme does not use any
cryptographic primitives. Instead, we use a line in a plane to represent a tag. The
points on the line, which are infinite and different each other, can be used as tag
identification. We also explore the scalability of the proposed scheme. The result of
experiments showed that a tag of the RFID system over 1,000,000 tags, embedded
3000 gates, can store 559 dynamic identity proofs.

Keywords: radio frequency identification, RFID, identification protocol, privacy,
untraceability, location privacy, scalability

1. Introduction

The Radio Frequency Identification (RFID) technique allows identifying hundreds of
objects one time via a contactless manner. It therefore becomes an important role in
many applications such as automobile immobilization, RTLS (Real Time Location
Systems), baggage handling, animal tracing, and item-level tagging in fashion
apparels. However, the RFID technique brings not only new opportunities but also
new challenges. In particular, secure and private RFID tag identification protocol is a
demanding task since the resource of RFID tags is extremely limited. There are three
roles in a typical RFID system: tags which are embedded in objects to be identified,
readers which emit radio signals to interrogate tags, and a server which maintains all
tags' information, identifies tags and provides services. In this paper, we focus on
three features of the RFID identification protocols.
 First, as being a low-cost device, a passive RFID tag is not powered and
accommodates only a few hundreds to thousands gates. Traditional cryptographic
primitives are thus hardly applied on such cheap tags [1, 2]. In addition, as tags are
usually embedded in objects carried by people everywhere, the user location privacy
is an essential requirement [1-5]. A common countermeasure is a tag answers a server
with a dynamic identity (DID). The server then solves the DID and extract the real tag

 2

identity. Meanwhile, a third party cannot link the DID to any particular tag and thus
cannot locate the user who carries the tag. Researchers also refer this property as
untraceability or unlinkability. Third, since many RFID applications require
deploying the tags in large scale, the scalability is also an important feature. If a
server takes linear time to identify a tag, the identification time for the server will
increase as the number of tags increase. This will limit the scalability of a RFID
system. Conversely, if a server takes constant time to identify a tag, the number of
tags will not be limited. Therefore, RFID scalability can be realized as constant-time
tag identification.
 In recent decades, many secure and private RFID authentication protocol are
proposed. Weies et al. [1] proposed a hash-based method to reserves user location
privacy. Their scheme uses a random number r and tag's secret key k to make a DID,
i.e. h(k, r), where h(.) is a one-way hash function. However, the server has to linearly
search its database (DB) to compare whether each h(ki, r) is equal to the received h(k,
r). This limits the scalability. Recent work [6] is a similar approach and suffers the
same problem.
 Ohkubo, Suzuki and Kinoshita (OSK) [2] proposed another hashed-based method
to further assure forward secrecy: even if tag's secrecy is exposed, the past
transactions that the tag was involved cannot be linked to the tag. In their scheme, a
tag and server share secrecy s0 when initialized. After deployment, on receiving the
ith query, the tag responds with h(si), where si = g(si-1) and g(.) is another one-way
hash function. On seeing h(si), the server reads its DB record by record. Suppose it is
reading the jth record and sj* is the corresponding seed. The server will compare
whether the received h(si) is equal to h(g1(sj*)), h(g2(sj*)), ..., or h(gm(sj*)), where gm(.)
indicates performing function g(.) m times. Consequently, the server has to take O(mN)
time for each tag identification, where N refers to number of tags.
 Studies [7, 8] arrange tags in a tree structure on secret keys they possess to reduce
the identification complexity to O(logN). However scheme [7] will be broken since
compromising 20 tags in a system of N=220 tags reveals the identities of other tags.
The improved scheme [8] requires updating overhead in O(logN) in order to remedy
the problem in [7]. Another major weakness is that the tree-based approach leads high
communication overhead between tag and reader. Some researchers believe these
drawbacks overweigh the reduction in identification complexity [13].
 RAP series [9-12] use monotonically increasing time as the randomness of a
hash-based DID. In an identification process for a group of tags, a server first
computes each expected DID by using a new challenge time and then integrates tags
using the challenge. On receiving an expected DID, the server can directly address the
corresponding tag. This design assures untraceability and resists replay attack. It can
achieve O(1) time to identify a tag for best case but still O(N) times for worst cases. In

 3

the worst case, a tag, suffered malicious queries before, will not answer the expected
response and the server will therefore launch brute searching for the tag identification.
 Alomair et al. [13, 14] uses two layers pointers to save pre-built DIDs − h(Ψi, c)s,
where Ψi is a pseudonym and c is counter ranging form zero to C − to allows
malicious queries to a specific tag at least C times. The size of the first-layer table is
estimated as O(NC) and each record point to a second-layer table. The each
second-layer table which points to a tag information is expected to contain only one
record. As a result, it assure constant-time identification when server seeing h(Ψi, c).
After recognizing Ψi, the server assigns an unoccupied pseudonym Ψk to the tag,
where h(Ψk, 0), h(Ψk, 1), ..., and h(Ψk, C) in the second-layer tables point to an empty
tag record, position p. Finally, the server updates its tables by moving the tag
information record to the new position p and emptying the original tag record, say
position p', as null. By this way it assures O(1) update.
 Ryu and Takagi (RT) [15] stores one-time values ∆={α1, ..., αm} as DIDs on a tag
where αi = Epk(TagID||r), Epk(.) is a public key encryption and the corresponding
private key only known to the server. For each interrogation, the tag responds with a
fresh one-time pad and a reader is allowed to write new one-time values in the tag
after successfully mutual authentication. As the server can obtain tag identity by
decrypting a received αi, RT achieves constant-time identification and thus assures
scalability. However, for about 60-bit security level, the size of αi is about 512 bits in
RSA encryption or 400 bits in ElGamal elliptic-curve encryption (ECC). Then,
suppose a tag with 3K bytes memory. It can store only 48 RSA-based or 61
ECC-based ciphertexts. This implies the tolerance for malicious query to a tag is only
48 or 61 times.
 Studies [16-18] use ECC-based approach while studies [19, 20] use Rabin's
cryptosystem, which are public-key based approaches. Public key cryptosystems
easily obtain constant-time tag identification but they pay hardware cost at tag side.
The most efficient ECC component costs 12.5K gates [21] while 512-bit Rabin's
encryption costs about 17K gates [22] or 10K gates [23]. These obviously greatly
exceed the cost of hash-like component AES, about 3.4K gates [24].

In this paper, we propose a new approach which is extremely low cost on tags
while assuring constant-time tag identification and keeping tag untraceability. Our
scheme uses the points of a line on a plan as one-time pseudonyms for a tag whose
identity is the slope of the line. In an initialization phase, a server transforms m points
of a line into a smaller space and then assigns the transformed data (playing a role like
DID) to a tag. In an identification phase, a tag answers a fresh DID; the server then
reverses the DID into a point in order to compute the original line and therefore
identifies the tag in constant time. Table 1 lists resource usage of the proposed scheme
and previous related works.

 4

The remaining of this paper is organized as follows. Section 2 describes the basic
idea of the proposed scheme while Section 3 presents the detailed implementation.
Performance evaluation and security analyses of the proposed scheme are shown in
Section 4 and 5 respectively. Finally, Section 6 gives conclusion and future work.

Table 1: Resource usage of the proposed scheme and previous related works

Schemes DB size Identifi-
Cation

DB
Update

Tag
Space

Communi-
cation

Note

Weis [1, 6] O(N) O(N) none O(1) O(1)
OSK [2] O(N) O(mN) O(1) O(1) O(1)
Tree-based [7, 8] O(N) O(lgN) O(lgN) O(1) O(lgN)

RAP series [9-12] O(N) O(1) or
O(N) O(1) O(1) O(1)

Alomair [13, 14] O(NC) O(1) O(1) O(1) O(1)

RT [15] O(N) O(1) none O(m) O(1) m is limited about
40-60

PKC-based [16-20] O(N) O(1) none O(1) O(1) Tag costs more gates

Ours O(N) O(1) none O(m) O(1) m is limited about
400-500

2. Basic Idea

In this work, we would like to use the slope of a line on a plane to represent a tag. The
tag then can be identified if it can provide correct information regarding the line.
Figure 1 shows the basic idea of our scheme. In the figure, a randomly chosen point (a,
b) is the secrecy of the server. For simplification and without loss of generality, we let
a = b = 0. A line Li having slope si and passing through (a, b) represents tag Ti. Any
point (x, y) on the line Li can be a proof of Ti. In addition, we assume that the length
of a or b is k-bit long, denoted as |a| = |b| = k. Then, the slopes of lines representing all
tags of a RFID system are defined as the set S = {s| s is an integer, −(2k-1−1) s 
+(2k-1−1), and s ≠ 0}. Hence, the number of tags in our system is N = 2k − 2. The
following algorithm demonstrates the tag initialization of this basic scheme.

Basic Tag Initialization {

S = [-(2k-1-1), +(2k-1-1)] - {0};

N = |S|; i = 1;

For s = -2k-1+1 to 2k-1-1 { //s presents the slope of a line

 // setup tag Ti;

 for j = 1 to m { // generate m pairs of (x, y)

 xj R [-(2k-1-1), +(2k-1-1)] - {a};
 yj = s * xj + (b - a * s);

 }

 Write m tuples, (x1, y1), ..., (xm, ym), into Ti's storage;

 5

 Insert {s, TagInfo, x1, x2, ..., xm} into server's database;

 Next i;

 }

}

Tag1 Tag2

Tagi

(a ,
b)

(x 2, y 2)
．

(line: Li with
slop:s)

Tagi's
(x 1,y 1), (x 2,y 2)...

Server's DB
s TagInfo

．
(x 1, y 1)

Fig. 1. Basic model of the study

When the tag initialization completed, each tag storage has m tuples of proofs, (x1, y1),
(x2, y2), ..., and (xm, ym). In the identification phase, on receiving an interrogation from
a server, a tag will answer an unused (xj, yj) pair. On receiving the pair, the server will
compute s = (xj − a)/(yj − b) and then use s to look up the corresponding tag in its DB.

We take k = 8 as an example. Then according to our design, S is a set of all
integers in [−127, 127] − {0} and each element in S represents an identity of a tag.
Moreover, we let a random pair (a, b) = (−23, −94) be the secret point of the server.
Then, we have y = −127x + 2827 to represent a tag which identity is −127 and points
(−27, 414), (99, −1558) and (−52, 3589) are the proofs of the tag. When the tag
provides any one of these proofs, say (−27, 414), the server can compute the
expression s = (414 − (−94))/ (−27 − (−23)) = −127 and thus obtain the identity of the
tag.
 Our approach has several merits: First, it assures constant-time tag lookup at
server side since a server can compute the slope of a tag and then directly fetch the tag
record. Furthermore, the constant-time tag identification implies scalability of a RFID
system compared to O(N)-time tag identification of many hash-based schemes [1, 2, 6,
9-12] (also see Table 1). The second merit of our approach is that it requires only O(N)
space to store tag information at server side. Thirdly, any two observed proofs, which
may come from one tag or from two different tags, are indistinguishable. This assures
untraceability and location privacy. Finally, the tag need not embed any

 6

cryptographic component such as PRNG, Hash or AES. Moreover, when being
identified, the tag as long as selects an unused proof as its answer. This takes
extremely low computational overhead.
 However, some details should be further considered. First, the plaintext of point (x,
y) is not suitable for transmission over an open network since any two eavesdropped
pairs (x1, y1) and (x2, y2) from a tag can deduce the slope of the tag. Therefore, (x, y)
pair should be transmitted in an encrypted form. Our countermeasure is that the server
transforms a (x, y) into a random-looking string in the initialization phase. Thus, the
random-looking result will play as a one-time pad and hence achieve unconditional
security. That is, even an adversary intends to exhaustively guess the server's secret
point (a, b), he does not has any clue − the plain (x, y)s or slopes − to examine his
guess. Second, the tag's memory size will be a limitation. As x and s both are k-bit
long integers, the value of the y will be about 2k-bit long. If a tag stores such a (x, y)
pair in a plain manner, it would take 3k bits. For example, supposing k is 20 bits, the
tag would take 60 bits of storage to store a (x, y) pair. Thus, a tag having 2K-byte
storage can store about 273 pairs of (x, y). We consider that if the storage size of the y
can be reduced to 20 bits as same as the storage size of x, the tag then can store over
400 pairs of (x, y). Therefore, the problem of this study can be further formulated as
how to downsize the storage of the y values.

3. The Proposed Scheme

In this section, we present a practical implementation based on our basic model. In the
implementation, we first consider how to store the y values in tags; i.e. how to encode
the y value to attain better space efficiency.
 We start the discussion from the range of y values. The maximum of all possible y
for any (a, b), denoted as YMAX, is
 YMAX = 2(2k-1−1)2 − 3*2k-1 + 122k-1

when (s, a, b, x) = (2k-1−1,−(2k-1−1),2k-1−1,2k-1−1) or (−(2k-1−1),2k-1−1,2k-1−1,−(2k-1−1)).
And y will reach the minimum, denoted as YMIN,
 YMIN = −2(2k-1−1)2 + 3*2k-1 − 1−22k-1

when (s, a, b, x)=(−(2k-1−1),−(2k-1−1),−(2k-1−1),2k-1−1)or (2k-1−1,2k-1−1,−(2k-1−1),−(2k-1−1)).
 Take k as 4 bits for example. The range of x will fall in [−7, 7] while the range of y
will fall in [−105, 105]. YMAX is 105 when (s, a, b, x) = (7, −7, 7, 7) or (−7, 7, 7, −7)
while YMIN is −105 when (s, a, b, x) = (−7, −7, −7, 7) or (7, 7, −7, −7). Thus, storing
y value requires about 8 bits while storing x value requires only 4 bits.
 However, according to our observation, the distribution of y is not uniform; it is
sparser when y is toward extreme values in the space [YMAX, YMIN]. Figure 2
supports this observation. It illustrates three distributions of (x, y) pairs, each
systematically sampling 4,963 pairs from 64,516 pairs, with parameters k = |x| = 8 bits

 7

and random point (a, b) is equal to (−68, 79), (−127, −127) and (127, 127),
respectively.

Fig. 2. Distributions of (x, y) pairs of (a, b) = (-68, 79), (-127, -127) and (127, 127)

 From Figure 2, we believe that y value can be compressed through some
transformation algorithms and mapped to a smaller space. Our intuitive solution has
two phases. Briefly, the first phase − fuzzification − transforms set Y (i.e. the range of
y) to Y' and the second phase − randomization − further transforms Y' to Y". Detailed
transformations are given in the following.
 First, it fuzzifies y value to reduce the order (cardinality) of Y. A value y(1) in Y can
be fuzzified as y(2) if

(1) y(2) is an element of Y,
(2) y(2) is proximate to y(1), and
(3) the slope of the line passing through the fuzzified point (whose y-axis is y(2))

should fall between s + 0.5 and s − 0.5, where s is the original slope of the
line passing the original point (whose y-axis is y(1)).

 Second, it uses a table to map each y' in Y' to a distinct random number y", i.e. MAP:
{0, 1}k{0, 1}k", yielding Y".

 The following algorithm presents our implementations. After the server randomly
chooses a point (a, b) in the setup phase, Tag Initialize Algorithm sets up all tags in
the system.

 Tag Initialization Algorithm (a, b) {

S = [-(2k-1-1), (2k-1-1)] - {0};

N = |S|;

s = -2k-1+1; //s presents the slope of a line

for i = 1 to N

 8

 // Arbitrarily select unset tag Ti;

 for j = 1 to m { // produce m pairs of (x, y)

 xj R S {0}-{a};
 yj = s * xj + (b - a * s);

 y"j = Transformation(yj);

 }

 Write m tuples (x1, y"1), ..., (xm, y"m) into Ti's storage;

 Insert {s, TagInfo, x1, x2, ..., xm} into database;

 Next s;

}

Transformation(y)

{

 List ylist; //each element in ylist has yVal, count, randNo

 //initialized with empty;

Search y's proximate value y* in the ylist;

If found {

 slope* = (y* - b)/ (x - a);

 If | slope*- slope| < 0.5 {

 y*.count++;

 Return y*.randomNo;

 }

 }

 New y*;

 y*.yVal = y;

 y*.count = 1;

 y*.randomNo  {0, 1}k";

 Insert y* into the ylist

 Return y*.randomNo;

}

In the identification phase, the server/reader interrogates tags. On receiving (x, y")
from a tag, the server will perform Tag Identification Algorithm as the following.

Tag Identification Algorithm (x, y")

{

 y*  Search ylist using y".

slope* = (y*- b)/ (x- a);

slope = FnindProximateInteger(slope*);

 9

Read tag record using slope;

If not found return "Invalid Data";

If x is not fresh return "Replay";

Else return "Accept";

 }

FnindProximateInteger(s)

{

 If (s¡ Floor(s) < 0.5)

Return Floor(s);

 Else

Return Ceiling(s);

 }

Example. Take k=8 as an example and suppose (a, b) = (−23, −94). The Tag
Initialization Algorithm starts from s = −127 to s = −127. When s = −127, it sets up
tag T1 and assigns its identity as −127, i.e. T1: y = −127x + 2827. The algorithm
continues generating the first x value randomly, say 49, and computes the
corresponding y = −9238. Then it transforms the value y. As the ylist is empty now,
the algorithm inserts y = −9238 into the ylist and returns a random string, say 1102.
Thus the first proof (49, 1102) for T1 is generated. The algorithm continues generating
the second random x, say 36, and computes corresponding y = 1557. Similarly, to
transform the value y, the algorithm finds the adjacent integer in the ylist, say −9238,
and checks whether the slope s* of a line, passing through (a, b) and (36, −9238), falls
between (−127−0.5, −127+0.5). Since it does not, the algorithm inserts the new y =
1157 into the ylist and returns a random string, say 25. Again, the second proof (36,
25) for T1 is generated. The algorithm goes on such steps m times and finally produces
m proofs for tag T1. Now, suppose that the algorithm comes to s = −35 and it sets up
T93: y = −35x − 899. The first random x = −70 and corresponding y = 1551. In
transformation, the algorithm finds an adjacent 1557 in the ylist and computes the
slope s* of a line passing through (a, b) and (−70, 1557) is equal to
(1557−(−94))/(−70−(−23)) = −35.13, falling in (−35−0.5, −35+0.5). It then uses 1557
instead of 1551. So, the proof of the line (s = −35) becomes (−70, 25), where the
value 25 is the corresponding random number of the value 1577 in the ylist.

Complexity of Tag Initialization Algorithm. In the algorithm, there are N tags to be
initialized; for each tag, the algorithm produces m pairs of (x, y); and for each y value,
the algorithm searches the proximate value of y in the ylist using binary search. Here,
we let the number of elements in the ylist be NoList. It is clearly that the NoList
increases gradually while more (x, y) pairs being generated. Figure 3 explores the
average variation of the NoList under varying m and k=8. Therefore, the complexity

 10

of Tag Initialization Algorithm can be estimated as  

mN

i iNoList*

1
)log(.

Fig. 3. The average variation of the NoList

We let |Y"| be the maximum of NoList. The complexity of Tag Initialization
Algorithm will be bounded by N*m*log(|Y"|) = N*m*log(2k") = N*m*k". Accordingly,
it is sufficient that k" is set to 11 for k=8, also refer Figure 3.

Complexity of Tag Identification Algorithm. For each tag identification, the server
searches y" in the ylist in order to map y" to y and then computes slope s to identify
the tag. It takes log(|Y"|) = k" times in average, a const-time identification.

4. Performance Evaluations
In this section, we use the results of experiments to evaluate the performance of the
proposed scheme. The first experiment examines the compression effect of the
proposed transformation algorithm on the y value. It adopts k=8 and chooses secret
point (a, b) as (−23, −94). Then, it computes all (x, y, y', y") quartets, where (x, y) is
the original point, y' is equal to y or the qualified adjacency of the y, and y" is the final
result, a one-time random number. Figure 4 demonstrates part of raw data. For the
rightmost column in Figure 4, it shows the slope, s*, which is computed by using (x,
y') and should be in the range of s plus or minus 0.5. To see the compression effect on
y, Figure 5 shows the distributions of (a): (x, y), (b): (x, y") and (c): (x, y") in smaller
scale, respectively, when (a, b) = (−23, −94). Fig. 6 shows the same cases when (a, b)
= (127, −127).
 From Figure 5 and Figure 6, we can see the original y ranging in [−215, 215] can be
compressed into the space of [0, 211] and the result displays a more uniform
distribution.

 11

s
(tag identity) x y y' y" Note: s*

-127 -127 13114 13114 1636 -127

-127 49 -9238 -9238 1102 -127

-127 36 1557 1557 25 -127

-35 -70 1551 1557 25 -35.13

-35 81 -3734 -3719 605 -34.86

1 116 45 46 1463 1.49

1 -9 -80 -80 491 1

51 16 1895 1906 1858 51.28

51 66 4445 4478 91 51.37

125 45 8406 8415 100 125.13

125 -106 -10469 -10508 749 125.47

Fig. 4. Part of raw data for (a, b) = (-23, -94) in experiment 1

Fig. 5. The compression effect on y for (a, b) = (-23, -94) in experiment 1

Fig. 6. The compression effect on y for (a, b) = (127, -127) in experiment 1

 12

 The second experiment explores scalability and corresponding parameter selections.
The goal of this experiment is to estimate the size of k" when k 16. As we know, k"
can be estimated by the order of Y". In the experiment, it randomly chooses (a, b), set
m as 250 (or 500), then executes Tag Initialization Algorithm five times, and finally
computes the average number of elements in Y", denoted as |Y"|average. Table 2 shows
the results.

Table 2. The estimation of the size of k¡

k N m |Y"|average k"

16 65,534 250 470,365 ( 219) 19

 500 498,700 ( 219) 19

20 1,048,576 250 6,180,011 ( 223) 23

 500 10,077,000 ( 224) 24

22 4,194,310 250 47,100,995 ( 226) 26

 500 108,205,904 ( 227) 27

 According to Table 2, we can estimate how many (x, y") pairs a tag can
accommodate under different system scale and different tag storage. Table 3 shows
the results.

Table 2. Parameter selection for different system scale

k N k" Tag
Storage m

16 65,534 19 1K 234

 2K 468

 3K 702

20 1,048,574 24 1K 186

 2K 372

 3K 559

22 4,194,302 27 1K 167

 2K 334

 3K 502

5. Security Analysis

We analyze the security of the proposed scheme in the following.

Privacy preservation. As shown in the proposed scheme, the proofs, (x, y") pairs, of
a tag are different for each identification. These proofs play as one-time pads.
Moreover, (x, y") can be treated as a random string since x is uniformly random while
y" is a random string generated by the server. Thus any two pairs (x1, y"1) and (x2, y"2)
responded by a tag or by two different tags do not have any relationship. Accordingly,

 13

the user location cannot be tracked when he bears something embedded with such a
tag.

Against tag identity guessing. It is a very interesting property of our scheme that an
adversary cannot guess the identity of a tag since he does not have any extra
information about the real y from an eavesdropped y". Again, any two eavesdropped
pairs (x1, y"1) and (x2, y"2) from a tag are just two random string and thus cannot
deduce the identity of the tag.

Against valid (x, y") guessing. An adversary might select an arbitrary sS and
consider that it must be the identity of a tag in the system. However, without server's
secrecy (a, b) he cannot determine the line for the tag. Even if he knows (a, b) and
thus can computes (x, y), the adversary cannot map y to y" since the mapping table is
preserved by the server. If the adversary uses random guessing, the successful
probability of his randomly guessed (x, y") which can be accepted by the server is
bounded by 2-(k+k").

Against (a, b) guessing. Any two lines representing two different tags can compute
the interaction point, i.e. the point (a, b). However, without any clear y value, an
adversary cannot determine any line. It is interesting that even when an adversary
wants to exhaustively guess server's (a, b), he cannot succeed since none of clear (x, y)
can be provided for examining his guessing. We refer to this security notion as
unconditionally secure.

6. Conclusion and future work

To our best knowledge, our scheme is the first attempt that uses a line on a plane to
represent a RFID tag. It assures constant-time tag identification and thus possesses the
scalability. Moreover, the random-looking response of a tag is changeable for each
identification guards the user location privacy. This paper is just the beginning. Our
future work are three aspects. The first is to find another better compression approach
for y value to further downsize the space of storing y.

Secondly, the proposed scheme also requires a mechanism of updating (x, y") pairs
in a tag. In our system described in Sec. 3, there will be no fresh (x, y") for a tag to
respond server/reader's interrogations when m pairs of (x, y") are used. This will
restrict the proposed scheme applied on many applications. A possible solution is that
the server reallocates m fresh pairs to the tag via a secure channel.

The third of the future work is to improve the proposed scheme to resist
denial-of-service (DoS) attacks. When suffered intensive malicious interrogations
(over m times), a tag in our system will be unavailable anymore. Alomair's solution is
to use a counter in a tag, which allows the tag producing many dynamic identities. In

 14

addition, the server in Alomair's scheme must store all possible dynamic identities.
The solution of RAP series is to launch brute search when the tag had suffered attacks.
Although these solutions are not satisfactory, our future work may start from these
works.

Reference

[1] S. A. Weis, S. Sarma, R. Rivest and D. Engels, Security and privacy aspects of
low-cost radio frequency identification systems, Security in Pervasive
Computing, March, 2003.

[2] M. Ohkubo, K. Suzuki and S. Kinoshita, Cryptographic approach to
"privacy-friendly" tags, Proc. in RFID Privacy Workshop 2003, MIT, November
2003

[3] A. Juels, RFID security and privacy: a research survey, Journal of Selected Areas
in Communication, 24(2) 381¡ 395, 2006.

[4] A. Juels and S. A. Weis, Defining strong privacy for RFID, ACM Transactions on
Information and System Security, 13(1), Otc., 2009.

[5] D. Molnar and D. Wagner, Privacy and security in library RFID: issues, practices,
and architectures, Proc. in 11th ACM Conf. Computer and Comm.Security (CCS
'04), Oct. 2004.

[6] J.S. Cho, S.S. Yeo and S.K. Kim, Securing against brute-force attack: a
hash-based RFID mutual authentication protocol using a secret value, Computer
Communications, 2010.

[7] G. Avoine, E. Dysli, and P. Oechslin, Reducing time complexity in RFID systems,
Selected Areas in Cryptography¡SAC, 3897:291-306, 2005.

[8] L. Lu, J. Han, L. Hu, Y. Liu, and L. Ni., Dynamic key-updating: privacy-
preserving authentication for RFID systems, International Conference on
Pervasive Computing and Communications, 2007.

[9] G. Tsudik, YA-TRAP: Yet another trivial RFID authentication protocol, Proc. in
4th IEEE Int. Conf. Pervasive Computing and Comm. (PerCom'06), Mar. 2006.

[10] T.V. Le, M. Burnmester, B.D. Medeiros, Universally composable and forward
secure RFID authentication and authenticated key exchange, Proc. in the Second
ACM Symposium on Information, Computer and Communications Security,
242¡ 252, Mar. 2007,

[11] M. Burnmester, T.V. Le, B.D. Medeiros, G. Tsudik, Universally composable
RFID identification and authentication protocols, ACM Transactions on
Information and Systems Security, 12(4), 2009.

[12] D.N. Duc and K. Kim, Defending RFID authentication protocols against DoS
attacks, Computer Communications, 2010.

[13] B. Alomair, A. Clark, J. Cuellar, and R. Poovendran, Scalable RFID systems: a

 15

privacy-preserving protocol with constant-Time identification, Proc. in the 40th
Annual IEEE/IFIP International Conference on Dependable Systems and
Networks ¡ DSN '10, Chicago, Illinois, USA, June 2010, IEEE.

[14] B. Alomair, and R. Poovendran, Privacy versus scalability in radio frequency
identification systems, Computer Communications, 2010.

[15] E. K. Ryu and T. Takagi, A hybrid approach for privacy-preserving RFID tags,
Computer Standards & Interfaces, 31, 812¡ 815, 2009.

[16] Y. K. Lee, L. Batina, and I. Verbauwhede, EC-RAC: Provably Secure RFID
authentication protocol, Proc. in IEEE International Conference on RFID,
97¡ 104. IEEE, 2008.

[17] Y. K. Lee, L. Batina, and I. Verbauwhede, Untraceable RFID authentication
protocols: revision of EC-RAC, Proc. in IEEE International Conference on
RFID, 178¡ 185, IEEE, 2009.

[18] Y.K. Lee, L. Batina, D. Singelee and I. Verbauwhede, Low-Cost untraceable
authentication protocols for RFID, Proc. in WiSec'10, New Jersey, USA, Mar.,
2010.

[19] M. Burmester, B.D. Medeiros and R. Motta, Anonymous RFID authentication
supporting constant-cost key-lookup against active adversaries, International
Journal of Applied Cryptography, 1(2), 2008

[20] Y. Chen, J. S. Chou and H. M. Sun, A novel mutual authentication scheme based
on quadratic residues for RFID systems, Computer Networks, 52, 2373¡ 2380,
2008.

[21] Y. K. Lee, K. Sakiyama, and I. Verbauwhede, Elliptic-Curve-Based Security
Processor for RFID, IEEE Trans. on Computers, 57(11), Nov., 2008.

[22] G. Gaubatz, J. P. Kaps, E. Ozturk, and B. Sunar, State of the Art in Ultra-Low
Power Public Key Cryptography for Wireless Sensor Networks, Proc. in the
Third IEEE International Conference on Pervasive Computing and
Communications Workshops (PERCOMW'05), 2005.

[23] F. Gosse, F. X. Standaert, and J. J. Quisquater, FPGA Implementation of
SQUASH, Proc. in the 29th Symposium on Information Theory in the Benelux,
2008.

[24] M. Feldhofer, S. Dominikus, and J. Wolkerstorfer, Strong authentication for
RFID systems using the AES algorithm, Proc. in the Workshop on Cryptographic
Hardware and Embedded Systems (CHES 2004), LNCS #3156, Springer, 2004

